Chapter 8

Accuracy of Implant Casts Generated withSplinted and Non-splinted Impression Techniques for Edentulous Patients: An Optical Scanning Study

PAPASPYRIDAKOS P.
BENIC G.I.
HOGSETT V.L.
WHITE G.S.
LAL K.
GALLUCCI G.O.

Clinical Oral Implants Research. 2011; Accepted on 03 April 2011, in press.
Accuracy of implant casts generated with splinted and non-splinted impression techniques for edentulous patients: an optical scanning study

Panos Papaspyridakos
Goran I. Benic
Virginia Lea Hogsett
George Shelby White
Kunal Lal
German O. Gallucci

Authors’ affiliations:
Panos Papaspyridakos, Goran I. Benic, Virginia Lea Hogsett, German O. Gallucci, Department of Restorative Dentistry & Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, USA
Panos Papaspyridakos, George Shelby White, Kunal Lal, Division of Prosthodontics, Columbia University College of Dental Medicine, New York, NY, USA
Goran I. Benic, Clinic for Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Zurich, Switzerland

Corresponding author:
German O. Gallucci, DMD, Dr. Med. Dent.
Department of Restorative Dentistry & Biomaterials Sciences
Harvard School of Dental Medicine
188 Longwood Avenue
Boston 02115 MA, USA
Tel.: +617 432 5764
Fax: +617 432 0901
e-mail: german_gallucci@hsdm.harvard.edu

Key words: accuracy, fully edentulous, implant casts, implant impressions, optical scanning

Abstract

Background: The accuracy of implant casts generated with various impression techniques was mainly investigated in vitro resulting in limited clinical data.

Purpose: (1) To compare the three-dimensional (3-D) accuracy of splinted and non-splinted impression techniques to the control casts (verification jigs) that had been used for actual patient treatment; and (2) to determine the maximum level of clinically undetectable misfit. The null hypothesis was that there would be no significant difference in the accuracy of casts generated with different impression techniques.

Materials and methods: The implant casts used for the prosthetic rehabilitation of 12 edentulous jaws with CAD/CAM zirconia, implant-fixed complete dental prosthesis (IFCDP) were included in this study. Intraoral acrylic jigs were used to fabricate index casts. Splinted and non-splinted, open-tray techniques were used to generate two casts. Optical scanning acquisition of the x-coordinates, y-coordinates and z-coordinates of the implant positions for each individual cast was performed. The “best fit” algorithm was used with computer software to superimpose the scanning datasets. Group I (n = 12) included casts from the splinted impression technique vs. acrylic jig casts, and group II (n = 12) included casts from non-splinted technique vs. jig casts.

Results: The paired t-test and Wilcoxon’s signed ranks test were used to compare the 3-D discrepancies within and between groups I (splinted vs. jig) and II (non-splinted vs. jig), respectively. Significant difference was found at the x-axis, y-axis and 3-D between groups I and II (P < 0.05), but not in the vertical z-axis (P > 0.05). Within subject, global 3-D discrepancies between groups I and II were significantly different (P < 0.05), corroborated by in vivo observations of clinical fit. Implant position in the arch affected the 3-D accuracy of casts for both anterior and posterior implants (P < 0.05).

Conclusion: The splinted technique generated more accurate casts than the non-splinted technique for one-piece IFCDPs in edentulous jaws and the null hypothesis was rejected. These clinical implications demonstrate improved accuracy of splinted impression techniques compared with the non-splinted technique. For the external connection, the implant system used in this study, a 3-D misfit ranging from 59 to 72 µm, may be considered the maximum discrepancy resulting in an acceptable clinical fit with one-piece IFCDPs.

Dental implants with direct contact to the host bone cannot accommodate distortions or misfit at the implant–abutment interface (Karl et al. 2004). Although, absolute passive fit of implant-fixed complete dental prostheses (IFCDPs) is unlikely, a level of biological tolerance seems to exist (Jemt & Book 1996). However, prosthesis misfit has been related to screw loosening/fracture, implant fractures and prosthetic component strain (Eckert et al. 2000; Duyck & Naert 2002; Hjamarsson et al. 2010; Elkasson et al. 2010).

An accurate impression of the intraoral spatial orientation of the implants is necessary to generate an accurate master cast. There are several clinical and laboratory variables that affect the accuracy of an implant cast including impression and pouring techniques (Lee et al. 2008), impression material and die stone properties, machining tolerance of prosthetic components (Binon 1995; Ma et al. 1997), implant angulation and/or depth (Assuncao et al. 2010). However, the impression procedure still remains one of the most significant factors. Various implant impression techniques have been developed in an effort to generate a master cast that will ensure the most accurate clinical fit of IFCDPs. The neces-
sity for splinting the impression copings has been advocated in various investigations [Assif et al. 1992, 1996; Vigolo et al. 2003, 2004; Assuncao et al. 2004, 2008a; Naconecy et al. 2004; Cabral & Guedes 2007; Arioli-Filho et al. 2009; Del’Acqua et al. 2010; Hariharan et al. 2010]. Some studies have shown better results with the non-splinted technique [Inturregui et al. 1993; Phillips et al. 1994; Burawi et al. 1997], whereas several others have shown no difference [Humphries et al. 1990; Barrett et al. 1993; Hsu et al. 1993; Herbst et al. 2000; Kim et al. 2006; Choi et al. 2007; Assuncao et al. 2008b; Del’Acqua et al. 2008; Lee et al. 2009].

The purposes of this study were (1) to compare the three-dimensional (3-D) accuracy of splinted and non-splinted impression techniques to control casts [verification jig] that had been used for actual patient treatment; and (2) to determine the maximum level of clinically undetectable misfit. The null hypothesis was that there would be no significant difference in the accuracy of casts generated with different impression techniques.

Materials and methods

This study included the implant casts that had been used during the prosthetic rehabilitation of 12 edentulous jaws. All implants had been virtually planned and surgically placed with stereolithographic templates and all edentulous jaws had been restored with a one-piece, screw-retained CAD/CAM zirconia IFCDP at the implant level [Papaspyridakos & Lal 2010]. Institutional Review Board approval for the applied surgical protocol had been obtained by the Columbia University Human Subjects Review Committee. Standardized prosthetic and laboratory procedures were used as follows.

Impression procedures

For the splinted impression technique, acrylic stock trays [Dentsply, Milford, DE, USA] were used for all impressions in the open-tray mode. Impression copings were connected to the implants, and seating of the copings was verified radiographically. Subsequently, the copings were connected to dental floss and splinted to each other with visible light polymerized acrylic resin [Triad gel, Dentsply]. The whole assembly was sectioned between all inter-implant areas and the same light polymerized acrylic resin was used to lute the copings together [Papaspyridakos & Lal 2008].

The impression material used was polyether (Impregum, 3M ESPE, St Paul, MN, USA) and additional material was injected with a disposable syringe [Monoject 412 Syringe; Salvin Dental, Charlotte, NC, USA] around the copings. For the non-splinted technique, an open-tray impression was taken for each patient following the same steps as described earlier. The only difference was that the impression copings were not splinted together.

Fabrication of casts

The laboratory pouring procedures were the same for all the impressions taken with both impression techniques. After connection of the implant analogs to the copings, low-expansion (0.09%) type IV die stone (Silky Rock; Whipmix Corp., Louisville, KY, USA) was mixed under vacuum and an initial pour of stone up to the middle of the analogs was carried out. After 30 min, the second pour of vacuum-mixed die stone was performed. This double-pouring technique minimizes the volumetric expansion of the stone and has been shown to lead to more accurate die casts [Del’Acqua et al. 2008].

Clinical procedures

A verification jig was fabricated intraorally for each patient by connecting temporary non-engaging abutments to the implants with dental floss and visible light-polymerized acrylic resin [Triad gel, Dentsply]. Implant analogs were connected to the temporary abutments in the jig, and the same die stone [Silky Rock, Whipmix Corp.] was used to pour the verification jig cast. All CAD/CAM IFCDPs had been fabricated at the implant level and presented with an accurate clinical fit on the basis of clinical and radiographic criteria [Papaspyridakos & Lal 2008, Abduo et al. 2010]. Before definitive insertion, all prostheses had been fitted on the splinted and non-splinted cast to indirectly assess the accuracy by two blinded examiners [Fig. 1].

Casts obtained from both impression techniques were compared with the cast derived from the verification jig [control cast], resulting in the following comparison groups:

• GROUP I: Casts generated from the splinted coping impression technique vs. casts indexed from the verification jig [control].
• GROUP II: Casts generated from the non-splinted coping impression technique vs. casts indexed from the verification jig [control].

Accuracy assessment with optical scanning

An optical scanner [Scan D101; Imetric 3D GmbH, Courgenay, Switzerland] coupled with industrial dedicated software, which included a 3-D transformation package (ImetricS; Imetric 3D GmbH) was used in this study to capture the 3-D orientation of the implants in each cast (Fig. 2).

The optical scanner included a light source that reaches the object with fringes of light shot by a camera [Del Corso et al. 2009]. By projecting many fringes and moving them along the whole surface to be scanned, a complete scan of the object and its 3-D reconstruction was obtained.

Scan adapters (5 mm diameter and 15 mm height) were used to determine the 3-D orientation of the implant positions. The scan adapters were metallic [INOX] and cylindrical. Titanium oxide spray was used as a coating before the scanning procedure. An experienced operator blinded to the type of casts performed all scanning procedures.

First, the scan adapters were placed on cast 1 [control]. The scan adapters were sprayed with titanium oxide coating and four measurements were performed without taking the model out of the scanner [Fig. 3]. Then, the clean scan adapters were placed on cast 2 [splinted] and sprayed again. The same scanning procedures were performed for cast 3 [non-splinted]. In the end, the scan adapters were placed back on control cast 1 and another measurement was performed. For all scans, the same scan adapters were moved from the corresponding position in set 1 to set 2 and then to set 3 in order to eliminate the effect of scan adapters. For all data sets, repeatability measurements were performed. The results showed that the accuracy was better than 5 μm in x-axis, y-axis and z-axis.

Fig. 1. Prosthesis seated on the cast.
The optical scanning data sets from each splinted and non-splinted cast were imported in the computer with dedicated software (ImetricS) and were superimposed with the data set from the control cast, respectively (Fig. 4). The “best fit” algorithm was used by the computer software to superimpose the different scanning data sets (Buhler 1981). The cumulative 3-D discrepancies were calculated for each cast, using the mathematical equation $3D = \sqrt{x^2 + y^2 + z^2}$.

Comparison of all deviations in x, y, z-axis and 3-D were made between and within groups I and II, and between anterior and posterior implants in groups I and II for both maxilla and mandible, respectively. A correlation was sought between the clinical assessment of fit of the IFCDP in every implant cast and the 3-D quantitative analysis of misfit with the optical scanning in order to identify the maximum acceptable 3-D misfit. If the IFCDP fit the implant cast, the 3-D misfit detected by optical scanning was recorded as clinically acceptable. Repetitive measurements for all casts can provide a threshold of clinically acceptable misfit.

Statistical analysis

The absolute values of the 3-D discrepancies were used to analyze the overall accuracy of the two groups (absolute accuracy). The data were analyzed for normal distribution with the Kolmogorov–Smirnov test (normality test). A paired t-test was used for parametric data and Wilcoxon’s signed ranks test was used for non-parametric data in order to determine statistically significant discrepancies among the group I (splinted vs. control) and II (non-splinted vs. control). The level of statistical significance was set at $P \leq 0.05$.

Results

The absolute values of the discrepancies (mean, SD and range) in x-axis, y-axis, z-axis and the total 3-D are presented in Table 1. Mean (SD) difference for group I (splinted vs. control) was 37 ± 17 μm in the x-axis, 21 ± 6 μm in the y-axis, 9 ± 5 μm in the z-axis and 44 ± 17 μm in 3-D. Mean (SD) difference for group II (non-splinted vs. control) was 53 ± 32 μm in the x-axis, 46 ± 18 μm in the y-axis, 37 ± 64 μm in the z-axis and 89 ± 60 μm in 3-D. The Kolmogorov–Smirnov test showed that the data were normally distributed ($P > 0.05$).

The paired t-test showed significant differences in the x-axis, y-axis and 3-D ($P < 0.05$) within groups I and II. No statistically significant difference was found ($P > 0.05$) in the vertical axis (z-axis). Wilcoxon’s signed ranks test showed similar significant differences in the x-axis, y-axis and 3-D between groups I and II ($P < 0.05$). No statistical significance was found ($P > 0.05$) in the vertical axis (Table 1).

Within subject, global 3-D discrepancies between groups I and II were statistically different ($P < 0.05$) such that the splinted technique produced more accurate casts than the non-splinted technique. The outcomes demonstrated by optical scanning were corroborated by observations from the clinical fit (Table 2). Before delivery, the zirconia prosthesis had been fitted on the splinted and non-splinted casts. The clinical fit was acceptable in 11 out of the 12 splinted casts, and in six out of the 12 non-splinted casts, respectively. The clinical observations and their correlation with the optical scanning measurements can be seen in Table 2. When the one-piece IFCDP was seated in an implant cast, the greatest 3-D deviation that resulted in a clinical fit was 59μm. Conversely, the smallest 3-D deviation that resulted in a clinical misfit was 72μm. Hence, for the external connection implant system used in this study, a maximum tolerable misfit between 59 and 72 μm was found.

The effect of the implant position in the dental arch and the 3-D positional accuracy is shown in Table 3. The implant position in the dental arch affected the accuracy of the casts for both anterior and posterior implants ($P < 0.05$). Specifically, both anterior and posterior implants of group I (splinted) presented with less 3-D deviations than the implants of group II (non-splinted).

Discussion

Passive fit of implant prosthesis depends on the accuracy of the implant cast, which is directly dependent on the accuracy of the impression technique. Several studies have indirectly assessed the accuracy of implant impressions by evaluating the fit and/or distortion of fabricated frameworks on the resultant casts with strain gauges and compared the fit and/or distortion of the frameworks on the reference master cast (Inturrregui et al. 1993; Assif et al. 1996; Naconeey et al. 2004; Choi et al. 2007). Other studies have evaluated the accuracy of the implant impressions by measuring inter-implant distances of the working casts in relation to a reference con-
The present study showed that the accuracy of casts produced with the splinted technique was significantly superior to casts produced with the non-splinted technique. These findings suggest that splinting the copings may result in more accurate casts for one-piece IFCDPs in edentulous jaws. Sectioning and soldering gold framework styles have been suggested as an alternate modality to compensate for impression inaccuracies. However, it is associated with additional treatment time and cost (Carr & Master 1996). The advent of CAD/CAM technology improved the framework fabrication procedures and increased the precision of fit for one-piece IFCDPs (Ort keep et al. 2003, Al-Fadla et al. 2007, Papaspyridakos & Lal 2008). Other prosthetic designs such as segmented prostheses and multiple strategically positioned implants have also been proposed for complete arch-fixed rehabilitations. A splinted impression coping technique may be less significant when a segmented rehabilitation for edentulous or partially edentulous patients is contemplated (Gal lucci et al. 2005). In addition, the implant position in the dental arch had an effect in the 3-D accuracy of the casts of groups I and II for both anterior and posterior implants (P < 0.05). The curvature of the arch and the greater antero-posterior spread may explain this observation.

Previous in vitro studies comparing splinted with non-splinted impression techniques have reported diverse results. The necessity for splinting the impression copings has been advocated in various investigations. Other studies showed better results with the non-splinted technique, whereas several others have shown no difference. Pertaining to edentulous situations with four or more implants, the preponderance of in vitro studies advocated the splinted impression technique (Lee et al. 2008). It must be highlighted that most studies published after 2003 advocate the splinted technique. Thus, the findings of the present study are in accordance with the majority of published in vitro studies regarding completely edentulous situations.

The diverse results from some previous in vitro studies may be partially explained by the machining tolerance of components, by the differences in methods for accuracy measurements and by improvements in dental materials. Paired prosthetic components may be rotationally displaced during connection to their respective parts (Kim et al. 2006). This displacement cannot be controlled by the clinician and lies within the range of the inherent machining tolerance (Binon 1995, Cheshire & Hobkirk 1996, Ma et al. 1997). Hence, errors occur during the connection of impression copings to the implants intraorally and to the implant analogs in the laboratory, respectively. For instance, Inturregui and colleagues performed a comparative in vitro study with first-generation prosthetic components of the Branemark System. Ma and colleagues showed that the machining tolerance of the first-generation components was larger than the currently used components and ranged from 33 to 100 μm. The machining tolerance differs between different implant systems and is an unknown variable in accuracy measurements. Moreover, the use of new splinting materials like

Table 1. Mean values, minimum, maximum and standard deviation (in μm) for Groups I and II

<table>
<thead>
<tr>
<th>Axis</th>
<th>Group I (splinted vs. jig)</th>
<th>Group II (non-splinted vs. jig)</th>
<th>P-value†</th>
<th>P-value‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Mean</td>
<td>SD</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>y</td>
<td>37</td>
<td>17</td>
<td>24</td>
<td>89</td>
</tr>
<tr>
<td>z</td>
<td>21</td>
<td>14</td>
<td>9</td>
<td>35</td>
</tr>
<tr>
<td>3-D</td>
<td>44</td>
<td>17</td>
<td>30</td>
<td>93</td>
</tr>
</tbody>
</table>

*Statistical significance P ≤ 0.05.
†Paired t-test.
‡Wilcoxon’s signed ranks test for dependent variables.

Table 2. Within-subject comparison of global three-dimensional (3-D) deviations (in μm)

<table>
<thead>
<tr>
<th>Subject</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Mean global 3-D deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I 3-D deviation</td>
<td>37</td>
<td>42</td>
<td>30</td>
<td>51</td>
<td>42</td>
<td>40</td>
<td>35</td>
<td>33</td>
<td>51</td>
<td>93</td>
<td>38</td>
<td>39</td>
<td>44</td>
</tr>
<tr>
<td>Group II 3-D deviation</td>
<td>36</td>
<td>85</td>
<td>72</td>
<td>57</td>
<td>50</td>
<td>241</td>
<td>44</td>
<td>59</td>
<td>170</td>
<td>104</td>
<td>92</td>
<td>56</td>
<td>89</td>
</tr>
<tr>
<td>Difference between Global¹ and Global²</td>
<td>1</td>
<td>43</td>
<td>42</td>
<td>6</td>
<td>8</td>
<td>201</td>
<td>9</td>
<td>26</td>
<td>119</td>
<td>11</td>
<td>54</td>
<td>17</td>
<td>55</td>
</tr>
<tr>
<td>Clinical fit</td>
<td>Both</td>
<td>Splint</td>
<td>Splint</td>
<td>Both</td>
<td>Both</td>
<td>Splint</td>
<td>Both</td>
<td>Both</td>
<td>Splint</td>
<td>None</td>
<td>Splint</td>
<td>Both</td>
<td>P-value‡: 0.025*</td>
</tr>
</tbody>
</table>

*Statistical significance P ≤ 0.05.
Table 3. Effect of the implant position in the three-dimensional (3-D) positional accuracy (in μm)

<table>
<thead>
<tr>
<th>Implants (n)</th>
<th>Mean (SD)</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>Group I (splinted vs. jig)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group II (non-splinted vs. jig)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteriors</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Posters</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anteriors</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Posters</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

†Wilcoxon’s signed ranks test for dependent variables. *Statistical significance P ≤ 0.05.

SD, standard deviation.

The authors wish to express their gratitude to Dr sc. techn. ETH Horst A. Beyer, Imetric 3d Gmbh, for performing the optical scanning and superimposition procedures, Dr Chun-Jung Chen, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, for assistance in the development of the statistical analysis and Dr Veerasaithpurush Allareddy, Department of Developmental Biology, Harvard School of Dental Medicine, for assistance in the statistical analysis.

Acknowledgements: The authors wish to express their gratitude to Dr sc. techn. ETH Horst A. Beyer, Imetric 3d Gmbh, for performing the optical scanning and superimposition procedures, Dr Chun-Jung Chen, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, for assistance in the development of the statistical analysis and Dr Veerasaithpurush Allareddy, Department of Developmental Biology, Harvard School of Dental Medicine, for assistance in the statistical analysis.

References

