CONTENTS

1 **Introduction** 1

2 **Outline of the thesis** 5

1 **One-body Reduced Density Matrix Functional Theory** 7

3 **Reduced Density Matrices** 9
 3.1 Spinless RDMs 11
 3.2 Orbital expansion 13
 3.3 Convergence of the NO based CI expansion 14

4 **One-body Reduced Density Matrix Functional Theory and Approximate Functionals** 21
 4.1 Gilbert Theorem 22
 4.2 Towards practical 1RDM functionals 23
 4.3 General form of the 1RDM functionals 24
 4.3.1 Non primitive elements of the 2RDM 25
 4.4 Survey of the existing functionals 25
 4.4.1 Exact functional for 2 electron systems 27
 4.4.2 Müller/BB/CH 28
 4.4.3 GU 29
 4.4.4 Holas 29
 4.4.5 Power 30
 4.4.6 CHF and SIC-CHF 30
 4.4.7 CGA and SIC-CGA 31
 4.4.8 HYB 31
 4.4.9 BBC and AC3 32
 4.4.10 ML and SIC-ML 34
 4.4.11 PNOF 35

5 **The Density Matrix Functional recovering Dynamic and Nondynamic Correlation along the Full Dissociation Coordinate** 39
 5.1 Natural orbital based expansion of the wave function: Löwdin-Shull type functionals for a correlated electron pair in a Hartree-Fock sea. 41
 5.2 The extended Löwdin-Shull (ELS) functionals 43
 5.3 Comparative analysis of DMFT functionals 47
 5.3.1 Post CI DMFT results 48
 5.3.2 Functionals for self-consistent DMFT calculations 53
 5.3.3 Quantitative comparison of the curves 57
 5.3.4 Occupation number distributions 58
 5.4 Conclusions 59
II Pair Density Approach to Intermolecular Interactions 63

6 A Brief Introduction to the Theory of Intermolecular Interactions 65

7 Reliability assessment of the counterpoise correction along the potential energy curve of Helium dimer 71

7.1 Computational Details 72

7.2 Results and Discussion 73

7.3 Conclusions 78

8 Dispersion Interaction between Two Hydrogen Atoms in Terms of the Two Particle Reduced Density Matrix 81

8.1 H₂ molecule in the triplet \(^3\Sigma_u \) state 82

8.2 H₂ molecule in the singlet \(^1\Sigma_g \) state 83

8.3 The interaction potential of singlet H₂ at long range 83

8.4 Natural Orbital Analysis of singlet H₂ at long distance 87

8.5 Unoccupied natural orbitals? 94

8.6 Conclusion 99

9 The Formulation of a Density Matrix Functional for Van der Waals Interaction of Like- and Opposite-spin Electrons in the Helium Dimer 103

9.1 Identification of the excitations leading to the Van der Waals pair density. 106

9.2 Contributions to the dispersion pair density from the excitations of types A and C 114

9.3 Remark on the single excitations 116

9.4 Convergence of the van der Waals bonding energy of the helium dimer with primitive basis set 116

9.5 Convergence of the van der Waals bonding energy of the helium dimer with the number of NOs used in the CI 119

9.6 Asymptotic regime of the potential energy curve 124

9.7 Discussion and conclusions 127

10 The Localized 2RDM Approach 131

10.1 Identification of the vdW type excitations 133

10.2 \(E'(a) \) excitations 134

10.3 \(E'(b) \) excitations 136

10.4 Spin components and dispersion energy 137

10.5 Preliminary results and discussion 139

10.6 Conclusions 140

11 Summary 143

12 Samenvatting 147

III Appendix 151

A Effect of Single Excitations in Helium Dimer 153

A.1 2RDM contributions 153

A.2 Dispersion energies 156

Acknowledgements 157
List of Figures 159
List of Tables 161
List of Acronyms 163
List of Publications 165
Bibliography 167