
Chapter 2

Some concepts in Game Theory

2.1 Asymmetric Nash Bargaining Solution

2.1.1 Formal description of the two person bargaining problem

A two person bargaining problem in utility representation consists of a disagreement point
d = (d1, d2) ∈ U and a feasibility set U ∈ R2. The disagreement point d is the payoff
the players can expect to get if negotiations break down. A feasibility set U is a closed,
convex and compact subset of R2 and the elements of the feasibility set are interpreted as
agreements. An agreement can take many forms, e.g., it could be an employment contract
between an employer and an employee, or a trade agreement between two countries. In our
water resource allocation problem, an agreement could be the water resources allocated
to each country and the monetary compensation scheme among all countries within a
trans-boundary river basin. The bargaining problem is nontrivial if there is at least one
agreement in U that is better for both parties than the disagreement, i.e., there exists
some v ∈ U such that v > d (i.e., vi > di for i = 1, 2). Formally, we denote a bargaining
problem as (U, d) and the set of all possible bargaining problems by B. A bargaining
solution is a function f : B → R2, s.t. ∀(U, d) ∈ B, f(U, d) ∈ U .

2.1.2 Nash bargaining solution

Nash (1950) proposes a bargaining solution that satisfies the following four axioms: in-
variance to affine transformation, Pareto efficiency, independence of irrelevant alternatives
and symmetry. These axioms are defined as follows,

• Invariance to affine transformations: given a bargaining problem (U, d), consider the
bargaining problem (U ′, d′), where for some αi > 0, i = 1, 2 and βi, i = 1, 2:

U ′ = {(α1v1 + β1, α2v2 + β2)|(v1, v2) ∈ U},
d′ = (α1d1 + β1, α2d2 + β2).

Then, fi(U
′, d′) = αifi(U, d) + βi, i = 1, 2, ∀(U, d) ∈ B.

• Pareto efficiency: a bargaining solution f is Pareto efficient if for (U, d) ∈ B there
does not exist a (v1, v2) ∈ U such that v ≥ f(U, d) and vi > fi(U, d) for some i.
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• Independence of irrelevant alternatives: let (U, d) and (U ′, d) be two bargaining
problems such that U ′ ⊂ U . If f(U, d) ∈ U ′, then f(U ′, d) = f(U, d).

• Symmetry: for all (U, d) ∈ B, if d1 = d2 and (v2, v1) ∈ U if and only if (v1, v2) ∈ U ,
then f1(U, d) = f2(U, d).

The above four axioms state the following: a transformation of the utility function that
maintains the same ordering over preferences (such as a linear transformation) should not
alter the outcome of the bargaining process; an inefficient outcome is not allowed, since
it always leaves some space for renegotiation; if we take irrelevant alternatives from the
original bargaining problem, the outcome of the bargaining process remains the same; if
the players are indistinguishable, the agreement should not discriminate between them as
well.

Nash (1950) proves that there is a unique function f that satisfies the above mentioned
four axioms on the class B of all bargaining problems. We state the following result
without a formal proof.

Proposition 2.1. Nash bargaining solution is the unique bargaining solution that satis-
fies the above mentioned four axioms, i.e., invariance to affine transformations, Pareto
efficiency, independence of irrelevant alternatives and symmetry.

In the following, we denote the unique function that satisfies the four axioms by fN .
Next, we propose a way to find fN(U, d) for any given (U, d) ∈ B.

Definition 2.1. For any given (U, d) ∈ B, fN(U, d) yields the pair of payoffs v∗ = (v∗1, v
∗
2),

where v∗ solves the optimization problem

max
v1,v2

(v1 − d1)(v2 − d2) (2.1)

s.t. (v1, v2) ∈ U, and (v1, v2) ≥ (d1, d2).

Since the set U is compact and the objective function of problem (2.1) is continuous,
there exists an optimal solution for problem (2.1). Moreover, the objective function of
problem (2.1) is strictly quasi-concave and U is a convex set, therefore problem (2.1) has
a unique optimal solution.

2.1.3 Asymmetric Nash bargaining solution

The two person bargaining problem can be generalized to n person. The set of players is
denoted as N = {1, 2, · · · , n}. Let U ∈ Rn and d ∈ Rn. The class of bargaining problems
for n person is denoted as Bn = {(U, d)|U ∈ Rn, d ∈ U}. For given bargaining weights
α = (α1, α2, · · · , αn), with

∑n
i=1 αi = 1, the asymmetric bargaining solution is the function

fα : Bn → Rn assigning outcome fα(U, d) ∈ U , s.t. fα(U, d) ≥ d, ∀(U, d) ∈ Bn. Similarly,
we construct the following maximization problem to find fα(U, d) for any (U, d) ∈ B,

max
v1,v2,··· ,vn

Πn
i=1(vi − di)αi (2.2)

s.t. (v1, v2, · · · , vn) ∈ U, and (v1, v2, · · · , vn) ≥ (d1, d2, · · · , dn).
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In the two person bargaining problem, fN is the solution for α1 = α2 = 1
2
. Hence, in the

original Nash bargaining solution, the bargaining weights are taken to be equal for both
players.

The Nash bargaining solution has been widely applied in many economic contexts,
e.g, the wage bargaining between employers and employees, see, Binmore et al. (1986).
In economic applications, bargaining weights are often related to GDP, population sizes,
political factors, military powers, etc and taken to be asymmetric. This reflects that
countries with, say, a larger GDP have much more at stake internationally as well as
more financial means to maintain a large and well-trained corpse of diplomats and ne-
gotiators, or a large army to conduct geopolitics. The strategic bargaining literature
underpins bargaining weights as either the probability of setting the agenda in random
proposer bargaining or the differences in individual time-preferences, see e.g., Herrero
(1989), Miyakawa (2006), Laruelle and Valenciano (2008) and Herings and Predtetchinski
(2010). In our trans-boundary river sharing problems in Chapter 3, we apply a general
version of the Nash bargaining solution and also the bargaining weights are taken to be
asymmetric due to the reason that countries within a river basin differ in their population
sizes, GDP, political factors and military strengths, etc.

2.2 Coalitional Bargaining Game

In this section, we introduce the coalitional bargaining game in its most general form
with a partition function form. In Chapter 4, we will use this coalitional bargaining game
to investigate a specific trans-boundary river sharing problem. Note that a partition
function is a generalization of the characteristic function of a coalition formation game.
The characteristics function, firstly introduced by von Neumann and Morgenstern (1944),
assigns a value to each coalition independent of the action taken by other players. While
the partition function assigns a value to each coalition dependent on the actions taken by
other coalitions (or players).

2.2.1 The Coalitional Bargaining Game

In this section, we introduce the general coalitional bargaining game (hereafter, CBG) of
Gomes (2005). The set of players is denoted as N = {1, 2, ..., n}. A coalition structure π
is a partition of N describing which coalitions have formed already. The initial coalition
structure is denoted by π0 and it is the finest partition of N , i.e., π0 = {{1}, {2}, ..., {n}}.
The CBG is a dynamic game where, at every round, a player (being a coalition in π) is
randomly chosen to propose an offer to a set of other players (coalitions) in the coalition
structure, who can either accept or decline the offer. For ease of notation, we assume
invariant probabilities in selecting who proposes throughout all rounds and all coalition
structures. Formally, there is a probability distribution p = (pi)i∈N with pi > 0 for all
i, and at the beginning of a bargaining round τ with coalition structure π formed in the
previous rounds, the probability of a coalition C ∈ π is selected to be the proposer with
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probability pC =
∑

k∈C pk.
1

The rules of the CBG are as follows. Let π be the coalition structure at the start of
some bargaining round τ and S ⊆ π be a collection of coalitions in π. Then the coalitions
in S can bargain and form a new coalition C ′ = ∪B∈S B, changing the coalition structure
to π′ = {C ′} ∪ (π \ S), where C ′ is the set of all players in N belonging to one of the
coalitions in S. To be more precise, at the start of a round a coalition C in the coalition
structure π is randomly chosen with probability pC to be the proposer. This coalition
then proposes the pair (S, t), where S ⊆ π with C ∈ S, is a collection of coalitions that
are proposed to merge into C ′, and the vector t = (tB)B∈S\{C} consists of the proposed
monetary offers tB ∈ R made by C to each coalition B ∈ S \ {C}. The coalitions in
the collection S that are proposed to, i.e., the coalitions in S \ {C}, respond sequentially
in a fixed order (the order of response turns out to be irrelevant), either accepting or
rejecting the offer. If these coalitions are unanimous in accepting the offer, then the new
coalition structure π′ = {C ′} ∪ (π \ S) immediately forms in round τ and the proposing
coalition C divides the continuation payoff of coalition C ′ in π′ by paying every joining
coalition B ∈ S the proposed lump-sum transfer tB and keeping the remainder.2 If the
responders are not unanimous in accepting the offer, then the next round’s coalition
structure equals this round’s coalition structure, i.e., the coalition structure does not
change, and there are no payments. We then write π′ = π. After accepting or rejecting
the proposal the game ends when π′ = {N}, (which can only happen when the proposal
(π, t) was accepted). Otherwise, the game proceeds into the next round where the stage
game is played once again and a coalition from π′ is chosen randomly to be the proposer.
Notice that according to the rules that once a coalition has formed, it never breaks up3 and
the renegotiation possibilities only allow for further merging of coalitions in the coalition
structure. Furthermore it is assumed that all players have perfect information about the
past play in the game when they make decisions. In order to avoid confusion, we will
refer to payoffs per round as disagreement values.

• disagreement value: dC(π) is the disagreement payoff for coalition C in π, i.e., it is
the value that coalition C obtains per round when π is the coalition structure.

Notice that even for π = {N} we call dN({N}) the disagreement value for the grand
coalition. Infinite streams of disagreement values are discounted by the common dis-
count factor δ ∈ [0, 1). Formally, we will work with normalized discounted payoffs
(1 − δ)

∑∞
τ=0 δ

τxτ , where xτ denotes the payoff in round τ. The merit of this normal-
ization is that if we let δ go to 1, then the normalized sum remains bounded.

Finally, following Gomes (2005), we will investigate mixed strategies and we assume
that all players (coalitions) in this game have von Neumann-Morgenstern preferences.

1Our general results also hold if we would allow for general probabilities pC(π) that depend on the
coalition structure. Okada (1996, 2000, 2011) also assumes invariant probabilities.

2Gomes (2005) assumes that coalition C becomes the sole owner of coalition C ′ after buying off all
owners B ∈ S \ {C}. Alternatively, but more elaborate, we argue to consider the members of C ′ as
shareholders whose share of current and future disagreement values is worth the offers in tB .

3Readers interested in a setting where coalitions may break up are referred to Gomes and Jehiel (2005).

10



2.2. Coalitional Bargaining Game

2.2.2 Markov Perfect Equilibria

In this section, we follow Gomes (2005) and study mixed Markov perfect equilibrium
(hereafter, MPE) of the general CBG. As is shown in this reference, mixed MPEs are
necessary for the existence of MPEs and therefore unavoidable in any analysis. We first
explain how to characterize mixed MPEs and then derive a necessary and sufficient condi-
tion for the immediate emergence of the grand coalition in an MPE. We do so in separate
subsections.

2.2.2.1 Strategies and Equilibria

Markov strategies assume that the τ -th round strategy of a player depends only on the
‘state’ of the game at the start of round τ . In the CBG, the state in round τ is the
coalition structure at the start of round τ . Thus, Markov strategies only depend on
the coalition structure π. At the stage game of round τ , the coalitions in the coalition
structure make decisions: one coalition makes a proposal and others who are proposed
to respond. Therefore, following Gomes (2005), we assume that in every stage game
the strategies of all players that belong to a same coalition C coincide, i.e., players in
a coalition act together as one decision maker. Under this assumption we define for
every coalition structure π a stage-game strategy for every coalition C ∈ π, with the
interpretation that the stage-game strategy of C ∈ π is the stage-game strategy of every
player i ∈ C, avoiding in this way duplication of strategies. Given a coalition structure
π, the pure stage-game strategy of coalition C ∈ π is composed of a proposal when
selected as the proposer and a response when being proposed to. In a (behavioral) mixed
stage-game strategy of coalition C ∈ π, this coalition possibly randomizes over the set of
actions available when taking the decision. Thus, coalition C randomizes over the set of
all proposals (S, t) when being the proposer and also randomizes over accept and reject
when being proposed to.

Mixed Markov strategies induce present values of infinite streams of expected dis-
agreement values, simply called values, for every coalition that depend on the coalition
structure π. In addition, we refer to these values as the equilibrium values in a MPE. So,
we have the following notion of value.

• vC(π) is the continuation (MPE) value for coalition C in coalition structure π at
the beginning of round τ prior to the randomization that determines who becomes
the proposing player in this round.

These values together with the stage-game Markov strategies have to be determined by
the equilibrium analysis. Notice that the value for the grand coalition is trivial and equal
to the infinite stream of disagreement values under coalition structure π = {N}, i.e.,

vN({N}) = (1− δ)
∞∑
τ=0

δτdN({N}) = dN({N}).

So when the grand coalition is formed, the value of N is equal to the disagreement value.
As shown in Gomes (2005) for any coalition structure, the response of any coalition

in any MPE stage-game strategy is always a pure strategy in which the responder always
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accepts when indifferent. Formally, when a coalition C ∈ π has to respond to a proposal
(S, t) made by another coalition C ′ ∈ π, i.e., C ∈ S ⊂ π and t is a vector of offers
including an offer tC of C ′ to C, then C accepts if and only if tC ≥ tC(π), where tC(π) is
the threshold value of C in π defined as

tC(π) = δvC(π) + (1− δ)dC(π). (2.3)

When C rejects the offer, it gets discounted continuation value plus the normalized dis-
agreement value in this round. For future reference, we write tS(π) = (tB(π))B∈S\{C}.

Now we consider the pure stage-game strategy of a coalition C ∈ π when C is chosen to
be the proposer. When C ∈ π proposes (S, t), the responding coalitions in S will all accept
the proposal if and only if the offer to any B ∈ S \ {C} is at least equal to its threshold
value tB(π). It follows that C extracts the highest surplus from proposing S when offering
exactly these threshold values to every B ∈ S \ {C}. When C proposes (S, tS (π)) and
all responding coalitions in S accept, then coalition C ′ = ∪B∈S B immediately forms,
π′ = {C ′} ∪ (π \ S) immediately becomes the new coalition structure and the value to
coalition C is equal to

vC((S, tS (π))|π) = δvC′(π
′) + (1− δ)dC′(π′)−

∑
B∈S\{C}

tB (π) . (2.4)

This value is equal to the discounted continuation value vC′(π
′) under the new coalition

structure π′ plus the normalized disagreement value under π′ minus the sum of the equi-
librium offers to the joining coalitions in S. The maximal attainable surplus that coalition
C can obtain from proposing any (S, tS(π)) is defined as

v∗C(π) = max
S⊆π,S3C

vC((S, tS(π))|π). (2.5)

So, when C ∈ π is chosen to be the proposer and it plays a pure MPE stage-game strategy
(S, t), then the proposed S of this MPE strategy must be a maximizer of (2.5) and the
associated transfers tS (π) offer exactly the threshold value tB(π) to any B ∈ S \ {C}.
Notice that we allow that coalition C proposes S = {C}, i.e., it proposes to stay alone,
guaranteeing itself δvC(π) + (1 − δ)dC(π). Staying alone is the unique best response
when vC((S ′, tS

′
(π))|π) < δvC(π) + (1 − δ)dC(π) for every S ′ containing some coalition

B ∈ π \ {C}.
The existence result for MPE in Gomes (2005) is for mixed MPE in which a proposing

coalition C is allowed to randomize over several coalitions S that are maximizers of (2.5)
with the understanding that the MPE proposal is

(
S, tS (π)

)
. Let σC(S|π) ≥ 0 be the

probability that C proposes (S, tS(π)) with
∑

S⊂π,S3C σC(S|π) = 1. Then a mixed Markov
strategy for the proposal of C in a stage game with coalition structure π is optimal if and
only if

σC(S|π) = 0 if vC((S, tS(π))|π) < v∗C(π) for all S ⊆ π, S 3 C. (2.6)

We end this section with the value of C ∈ π in a mixed strategy MPE. When C is
chosen to be the proposer it realizes payoff v∗C(π) = maxS⊆π,S3C vC((S, tS(π))|π) from
playing an optimal mixed Markov strategy. This happens with probability pC . When
some other coalition B ∈ π is the proposer and proposes S including C, then C gets it
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threshold value tC(π). This happens with probability
∑

B∈π\{C}

[
pB
∑

S⊆π
S3B,C

σB(S|π)

]
.

Finally, when B proposes a collection S not including C, then the expected payoff of C is
given by tC(π′), where π′ is the coalition structure resulting from the proposal of B. This

happens with probability
∑

B∈π\{C}

[
pB
∑

S⊆π
S3B,C 6∈S

σB(S|π)

]
. It follows that

vC(π) = pCv
∗
C(π)+tC(π)

∑
B∈π\{C}

pB ∑
S⊆π
S3B,C

σB(S|π)

+tC(π′)
∑

B∈π\{C}

pB ∑
S⊆π

S3B,C 6∈S

σB(S|π)

 .
Rewriting the above formula, we obtain,

vC(π) = pC(v∗C(π)− tC(π))

+tC(π)
∑
B∈π

pB ∑
S⊆π
S3B,C

σB(S|π)

+ tC(π′)
∑

B∈π\{C}

pB ∑
S⊆π

S3B,C 6∈S

σB(S|π)

 . (2.7)

In the above expression, the value function is composed of two parts: the first part (the
first term of the right-hand side) is the maximal net surplus from being the proposer if
all coalitions B ∈ S including proposing coalition C are paid tB (π). This net surplus is
the advantage to propose. Furthermore, for every merger of coalitions B ∈ S, the net
surplus of proposing the coalition S is the same. In MPE, each coalition in π randomizes
over those S that maximize this coalition’s net surplus, see Gomes (2005). The second
part (the second and third term of the right-hand side) represents coalition C’s status quo
value. Note that the status quo value depends on other players’ mixed strategies as well.
For instance, the second term is the status quo value when C is included in the proposal
and the third term describes the situation when C is not included in the proposal.

2.2.2.2 Immediate Formation of the Grand Coalition

In this section we first impose a sufficient condition that assures that in every bargaining
round at least two coalitions in the coalition structure merge together, i.e., under the
assumption every proposing coalition proposes to merge with at least one other coalition.
It follows that under this assumption the grand coalition forms in at most n− 1 rounds,
because in a MPE a proposal is always accepted.

Assumption 2.1. For every coalition structure π 6= {N} it holds that
∑

B∈π dB(π) <
dN({N}).

Lemma 2.1 (Gomes, 2005). Under Assumption 2.1 it holds that for every π 6= {N}
and every C ∈ π that σC({C}|π) = 0.

Although Gomes (2005) provided a proof, we will give an alternative proof in the
appendix of this chapter.
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Assumption 2.1 means that only the grand coalition can fully internalize the exter-
nalities and therefore it follows that the maximum surplus from being the proposer (i.e.,
the first term of the right-hand of equation (2.7)) is positive. Therefore in every coali-
tion structure every proposer will propose to merge with at least one other coalition,
thus σC({C}|π) = 0. Notice that, in any mixed MPE, the proposer may randomize over
several coalitions and that he always makes proposals of the form (S, tS(π)) that will be
accepted. So, the proposer will reach some agreement for sure.

The consequence of this result is that each coalition C ∈ π will make an acceptable
proposal for sure and that the state moves from π to π

′
, where S 6= {C} depends upon

the coalition proposed by C. An intuitive explanation is that players can renegotiate the
contract and the efficient grand coalition acts as a “sink” of the Markov process to which
the system converges. Similar results can be found in the literature (e.g., Chatterjee et al.
(1993), Okada (2000)). The fact that the equilibrium path converges to the grand coalition
is based on the assumptions that the coalition does not break up and the efficiency of the
grand coalition.

We next state several results under the assumption that it is optimal to propose the
grand coalition. The first lemma yields the continuation payoff of a coalition C ∈ π when
it is optimal for every B ∈ π to propose S = π, thus to propose the grand coalition
N = ∪D∈π D with probability 1.

Lemma 2.2 (Gomes, 2005). For a coalition structure π 6= {N}, let σB(π|π) = 1 for
every B ∈ π. Then it holds that

vC(π) = dC(π) + pC

(
dN({N})−

∑
B∈π

dB(π)

)
, for every C ∈ π.

In Gomes (2005), this result is stated without proof and we provide a proof in the
appendix of this chapter.

The lemma states that the value for a coalition C ∈ π when every coalition in π
proposes to form the grand coalition is equal to its disagreement payoff dC(π) under
coalition structure π plus a fraction pC of the net surplus

(
dN({N})−

∑
B∈π dB(π)

)
. The

probability to propose can be regarded as a measure of bargaining power and be taken as
a coalition’s bargaining weight in the asymmetric Nash bargaining solution.

In order to state the next result, we need some additional notation. For two coalition
structures π and π′, we denote π′ ≤p π if π′ 6= π can be obtained from π by merging coali-
tions together, i.e., π′ is coarser than π.4 The next theorem states that under Assumption
2.1 it is optimal for every proposer in a coalition structure π 6= {N} and every coarser
coalition structure π′ ≤p π to propose the grand coalition if and only if the discount factor
is at most equal to some upper bound. Let S ⊂ π be a proper collection of subsets of π,
thus ∪B∈S B 6= N , and suppose that a member of S proposes to form ∪B∈S B. Let πS
be the new coalition structure, thus πS = {S∪} ∪ (π \ S), see footnote 4 for notation S∪.

4Formally, we denote π′ ≤p π if |π′| ≤ |π| and for every B ∈ π′ there exist S ⊆ π such that B = S∪,
where S∪ denotes ∪B∈S B. Note that when C ∈ S is the proposer, we denoted above S∪ by C ′ and πS
by π′ = {C ′ ∪ (π \ S)}. So π′ ≤p π and π ≤p π′ if and only if π = π′. Moreover, any π′ ≤p π such that
π′ 6= π is obtained from π after merging coalitions together. Notice that π′ = {N} if and only if |π′| = 1.

14
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Now, define

δπ(S) =
dN({N})− dS∪(πS)−

∑
B∈π\S dB(π)(

dN({N})−
∑

B∈π dB(π)
)∑

B∈π\S pB + pS∪
(
dN({N})−

∑
B∈πS dB(πS)

) (2.8)

and
δ(π) = min

S∪ 6=N
δπ(S).

Finally we define
δ(π) = min

{ π′≤pπ | π′ 6={N} }
δ(π′).

We show the following result.

Theorem 2.1. Let π 6= {N}. Under Assumption 2.1, for every proposer in the subgame
at state π and every proposer in every subgame at state π′ ≤p π it is optimal to propose
S = π if and only if δ ≤ δ(π).

The MPE strategies underlying this result are pure strategies. Intuitively, if δ is large
enough, delay of forming the grand coalition might occur because then the efficiency
loss due to the delay of the grand coalition formation is relatively small. In such a case
proposers may have an incentive to search for a better bargaining position, e.g., propose a
partial coalition instead of the grand coalition. When δ ≤ δ(π), then the grand coalition
will be proposed immediately in π and also in any coalition structure π′ ≤p π, so in any
coalition structure π′ ≤p π that might evolve in the sequence of bargaining rounds that
will occur when a coalition C ∈ π deviates from the equilibrium path and the grand
coalition does not form immediately from π. Notice that, by definition, δ(π) ≤ δ(π) and
for δ > δ(π) we distinguish δ(π) = δ(π) from δ(π) < δ(π). First, in case δ(π) = δ(π),
i.e., the minimum over π′ ≤p π is attained at the current coalition structure π, then
proposing the grand coalition is clearly not optimal in coalition structure π because of
δ > δ(π) = δ(π). Second, if δ(π) < δ(π), i.e., the minimum is attained for some coarser
π′ 6= π, then for δ(π) < δ < δ(π), there is some π′ ≤p π, π′ 6= π, at which for at least
one coalition in π′ it is not optimal to propose the grand coalition. As a result it might
be that, on the equilibrium path, for some coalition in π it is better to make a proposal
leading to π′ (in one or more bargaining rounds) instead of moving to the grand coalition
immediately. However, in this situation it might also be that, on the equilibrium path,
for every coalition in π it is still optimal to move to N immediately, only when a coalition
deviates and the off-the-equilibrium-path coalition structure π′ is reached it is not optimal
anymore to form N , which in equilibrium cannot occur.

Theorem 2.1 implies that the grand coalition is formed immediately from the initial
coalition structure π0 consisting of single players when δ ≤ δ(π0). If this holds then it is
also optimal to propose the grand coalition immediately for every π 6= {N}. Furthermore,
let π be a coalition structure with |π| = 2, so π consists of two coalitions, say C1 and C2.
Then

δ(π) = min
{π′≤π:|π′|6=1}

δ(π′) = δ(π) = min
S={C1},S={C2}

δπ(S) = 1,

because taking either S = {C1} or S = {C2} yields δπ(S) = 1. So, this implies that
from a coalition structure with two coalitions the grand coalition is formed immediately
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for every value of δ ∈ [0, 1) and, thus, Lemma 2.1 is a special case of Theorem 2.1. This
is in accordance with the results for the bilateral alternating-offer model with random
proposers in e.g. Muthoo (1999). Moreover, every coalition structure π always contains
coarser coalition structures π′ with two coalitions and, hence, δ(π) ≤ 1.

Finally, we investigate the necessary and sufficient condition for the grand coalition to
form immediately in all π′ ≤p π0 for all δ ∈ [0, 1), i.e., δ(π0) = 1. Notice that δ(π0) = 1
if and only if δπ(S) ≥ 1 for every π 6= {N} and every S ⊂ π. So, δ(π0) = 1 if and only if
for every π 6= {N} and every S ⊂ π it holds that

dN({N})− dS∪(πS)−
∑
B∈π\S

dB(π) ≥(
dN({N})−

∑
B∈π

dB(π)

) ∑
B∈π\S

pB + pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
.

By rearranging terms this reduces to the inequality

dS∪(πS)+pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
≤
∑
B∈S

[
dB (π) + pB

(
dN({N})−

∑
B∈π

dB (π)

)]
.

(2.9)
From above, we know that these inequalities only impose restrictions for coalition struc-
tures with three or more coalitions, i.e., |π| ≥ 3. This yields the following corollary.

Corollary 2.1. For every subgame at state π and every proposer in π it is optimal to
propose the grand coalition if and only if for every π such that |π| ≥ 3 and every S ⊂ π
inequality (2.9) holds.

Proposition 4 of Gomes (2005) states that the grand coalition is formed immediately
if the inequality (2.9) holds, i.e., is a sufficient condition. The corollary shows that
Proposition 4 follows as a special case from Theorem 2.1 and, moreover, that it is a
necessary and sufficient condition. Moreover, we also conclude that coalition structures
with two coalitions can be neglected.

2.3 Internal Stability

The concept of stability is firstly introduced in d‘Aspremont et al. (1983) for the cartel
collusive price. There is only one coalition with more than one player (i.e., the cartel) and
the other players remain as a singleton. Internal stability of a cartel means that no player
in the cartel has an incentive to leave it, i.e., a player who leaves the cartel gets a lower
payoff compared with his current payoff in the coalition. External stability of a cartel
means that no player outside the cartel has an incentive to join the cartel, i.e., if he joins
the cartel, he gets a lower payoff in the cartel compared with his payoff under the “status
quo”. If the conditions for internal and external stability are satisfied, the cartel is said
to be stable. In d‘Aspremont et al. (1983), the whole analysis is based on the assumption
that all players are identical. The application of stability to International Environmental
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Agreements is largely hampered by the symmetry assumption because most countries are
not identical. For instance, in an International Water Sharing Agreement, countries might
differ in its catchment in a trans-boundary river basin and also the economic dependence
on this river basin. Hence, the distribution of the benefits of an International Water
Sharing Agreement is crucial for individual incentives to join the agreement and, hence,
for the stability of the agreement. Weikard (2009) analyzes the stability of cartels in games
with heterogeneous players and externalities. He introduces a class of sharing rules for
coalition payoffs, called “optimal sharing rules”, that stabilize all cartels that are possibly
stable under some arbitrary sharing rule. Similar analyses can be found in Eyckmans
and Finus (2004) and Weikard et al. (2006). Note that all these references rely on the
assumption that there is only one coalition with more than one player among all players,
thus only one cartel.

Like mentioned above, the concept of stability is relevant for the International Water
Sharing Agreements since it identifies the “internal” incentives for all coalition members
to cooperate. For instance, the four Lower Mekong Countries, i.e., Thailand, Laos, Cam-
bodia and Vietnam, signed the 1995 Agreement for “sustainable development, utilization,
conservation and management of the Mekong River Basin water and related resources”.
In reality, there is no legal body to enforce the agreement in trans-boundary river basins.
It is paramount that all members in the agreement must have incentives to comply with
the signed treaty. The essential idea is that the payoff of the coalition is sufficiently large
such that it is able to satisfy each coalition member’s “outside option”. In this disserta-
tion, each member’s “outside option” is defined as his payoff if he unilaterally deviates
from the coalition and remains as a singleton.

Let the collection of all possible partitions ofN = {1, 2, · · · , n} be Π and the exogenous
partition into m groups of agents be π = {P1, P2, . . . , Pm}.5 We call an element in π a
group of agents. Note that |P1|+ |P2|+ · · ·+ |Pm| = n, m ≤ n, where |Pj|, j = 1, . . . ,m,
is the number of agents in coalition Pj, Pj ∈ π. In case m = n, each agent is a singleton.
In case m = 1, the grand coalition is formed. Let the payoff for each group of agents in
partition π be d(Pj|π), Pj ∈ π.6 We need to assign a payoff to each agent i ∈ Pj, Pj ∈ π.

Definition 2.2. An allocation rule γ is a function v : Π→ RN that assigns a payoff vi(π)
to any i ∈ N , for all π ∈ Π.

The group efficiency condition for the allocation rule γ is imposed, i.e.,
∑

i∈Pj
vi(π)

= d(Pj|π) for any Pj ∈ π, π ∈ Π.
The next question is whether the allocation rule γ makes the partition π internally

stable. By saying this, we mean that there is no beneficial unilateral deviation for a player
to be a singleton from the current partition π. For instance, consider the deviation of one
agent leaving his group of agents in partition π. Let i ∈ Pj be the deviating agent that
leaves Pj ∈ π. After agent i leaves Pj, the new partition will be πi = {P1, P2, . . . , Pj \
{i}, {i}, . . . , Pm}. Note that the new partition is finer and has m + 1 groups of agents
including at least one singleton {i}, i ∈ N . The payoff for the deviating agent i under πi

serves as his “outside option” in the current partition π.

5Note that in Section 2.2, we use the term coalition structure instead of partition.
6We will discuss more details about how to calculate d(Pj |π) in Chapter 5.
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Definition 2.3. Under allocation rule γ, partition π is internally stable if vi(π) ≥
d({i}|πi) for all i ∈ N .

Note that under group efficiency condition, for any allocation rule, the partition π =
{{i}, i ∈ N} is internally stable.

Proposition 2.2. There exists an allocation rule γ to make partition π internally stable
if and only if d(Pj|π) ≥

∑
i∈Pj

d({i}|πi), for all Pj ∈ π.

The above proposition is straightforward. Note that it could be well possible that
d(Pj|π) <

∑
i∈Pj

d({i}|πi), Pj ∈ π, see, e.g., Theorem 2 and Example 1 in Ambec and

Ehlers (2008). In this scenario, the payoff of the coalition under π is insufficient to satisfy
each agent’s “outside option” in terms of unilateral deviation from the current coalition.
In Chapter 5, we will consider a scenario with only one partial coalition with connected
agents (of more than one agents) in the International Water Sharing Agreement and
investigate the stability of the coalition. An empirical study to the Mekong River Basin
is also presented in Chapter 5.

2.4 Appendix with proofs of Chapter 2

Proof of Lemma 2.1

Consider the proposal
(
S, tS (π)

)
= (π, tπ (π)) for coalition C, then in (2.7) the first term

on the right-hand side becomes

(1− δ)dN({N}) + δvN({N})−
∑
B∈π

[(1− δ)dB(π) + δvB(π)]

= (1− δ)

[
dN({N})−

∑
B∈π

dB(π)

]
+ δ

[
vN({N})−

∑
B∈π

vB(π)

]
> 0,

because the first term is positive by Assumption 2.1 and the second term is nonnega-
tive. So, the maximum has to be positive, which rules out that proposing

(
S, tS (π)

)
=(

{C}, t{C} (π)
)

is optimal. QED.

Proof of Lemma 2.2

If σB(π|π) = 1 is optimal for every B ∈ π, π 6= {N}, then
∑

S⊂π
S3B,C

σB (S|π) = 1 and∑
S⊂π

S3B,C /∈S
σB (S|π) = 0. So, Equation (2.7) degenerates to

vC(π) = pC

[
(1− δ)dN({N}) + δvN({N})−

∑
B∈π

[(1− δ)dB(π) + δvB(π)]

]
+ [(1− δ)dC(π) + δvC(π)] .
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Summing over all B ∈ π and substituting vN({N}) = dN({N}) yields
∑

B∈π vB(π) =
dN({N}). Then the equation for vC(π) can be rewritten into

(1−δ)vC(π) = (1−δ)dC(π)+pC

[
(1− δ)(dN({N})−

∑
B∈π

dB(π)) + δ

[
dN({N})−

∑
B∈π

vB(π)

]]
and we immediately obtain

vC(π) = dC(π) + pC

(
dN({N})−

∑
B∈π

dB(π)

)
.

QED.

Proof of Theorem 2.1

Only if: The equilibrium conditions such that every proposer in the subgame at state π
proposes the grand coalition impose that

(1− δ) dN({N}) + δvN ({N})−
∑
B∈π

[(1− δ) dB (π) + δvB (π)]

≥ (1− δ) dS∪(πS) + δvS∪(πS)−
∑
B∈S

[(1− δ) dB (π) + δvB (π)] ,

for all S ⊂ π. Rewriting several times yields

δ

vS∪(πS)− dS∪(πS) +

(
dN({N})−

∑
B∈π

dB(π)

) ∑
B∈π\S

pB


≤ dN({N})− dS∪(πS)−

∑
B∈π\S

dB(π).

Notice that we consider strategies in which every proposer in every subgame π′ ≤p π
proposes the grand coalition. Then according to Lemma 2.2 we have

vS∪(πS) = dS∪(πS) + pS∪

(
dN({N})−

∑
B∈πS

dB(πS)

)
.

By further substitution, we get

δ

pS∪ (dN({N})−
∑
B∈πS

dB(πS)

)
+

(
dN({N})−

∑
B∈π

dB(π)

) ∑
B∈π\S

pB


≤ dN({N})− dS∪(πS)−

∑
B∈π\S

dB(π).

Since the grand coalition is efficient, the term in the square bracket on the left-hand side
is positive. Then, δ ≤ δπ(S) follows immediately. By taking the minimum over all S∪
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we obtain δ ≤ δ(π) for every coalition structure π. Finally, by taking the minimum over
π and coalitions structures coarser than π, i.e., {π′ ≤p π : |π′| 6= 1}, we get the desired
result.
If: When δ ≤ δ(π), we prove the result recursively. Let π be a coalition structure with
|π| = 2, so π consists of two coalitions, say C1 and C2. Then

δ(π) = min
{π′≤pπ:|π′|6=1}

δ(π′) = δ(π) = min
S={C1},S={C2}

δπ(S).

Taking either S = {C1} or S = {C2} yields δπ(S) = 1, implying that from a coalition
structure with two coalitions the grand coalition is formed immediately for every value of
δ. Now consider |π| = 3, when δ ≤ δ(π), it can be easily shown that for every proposer
in π, it is optimal to propose the grand coalition immediately. For π = π0 and |π| > 3,
we can deduce backwards in a similar way. QED.
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