
Chapter 3

Asymmetric Nash Solutions in
Trans-boundary River Sharing
Problems

3.1 Introduction

As mentioned in Chapter 1, the main issues in trans-boundary river basins are scarcity
of water and externalities from upstream to downstream. For instance, excessive water
consumption of upstream countries might deprive the right of water consumption for
downstream countries. Another prominent issue is that upstream countries could pollute
the trans-boundary river carelessly without taking into account the downstream countries’
benefits. Unfortunately, the property rights of water in trans-boundary river basins are not
properly defined. Therefore, some particular characteristics of the river sharing problem
such as the externalities of pollution from upstream to downstream and the absence of
clearly defined property rights in international river situations have drawn interests from
researchers to study the river sharing problem.

Giannias and Lekakis (1996) and Kilgour and Dinar (2001) analyze the river sharing
problem between two or more countries along an international river that is linear, i.e., a
river where agents are located subsequently from upstream to downstream. The model in
the first reference distinguishes between upstream and downstream, is deterministic and
has both water quantity and water quality. The second reference analyzes a stochastic
model of water quantity among several countries. Both studies characterize the unique
allocation that maximizes utilitarian welfare. Ambec and Sprumont (2002) mark the start
of embedding legal principles from International Water Law in the river sharing problem.
They translate the legal principles of Absolute Territorial Sovereignty (hereafter, ATS) and
Unlimited Territorial Integrity (hereafter, UTI) into their model. ATS is applied to every
group of agents and imposes conditions of core stability. UTI is also applied at the group
level, but it is an aspirational approach. It is impossible that distinct groups of countries
can simultaneously achieve their group aspiration levels. As appropriate requirements,
Ambec and Sprumont (2002) propose group ATS and that no group attains a welfare
above its group aspiration level. For a linear river with insatiable agents, they show that
the downstream incremental solution is the only welfare distribution that satisfies these
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two requirements. Ambec and Ehlers (2008) generalize this result by allowing for agents
with a satiation point. In van den Brink et al. (2012), other legal principles and more
general river geographies are considered.

International Water Law states that countries should mutually agree on sharing the
river through negotiations. For that reason, we approach the river sharing problem from a
bargaining perspective. Ambec and Ehlers (2008) show that the downstream incremental
solution can be implemented as the unique outcome of a sequential bargaining process. In
this process, lexicographical priority is given who proposes in the order from downstream
users to upstream users. A proposal is a feasible allocation of water and monetary transfers
among the proposer and all of his upstream users. If a proposed allocation is rejected,
its proposer is committed to leave the bargaining and restricted to use his own local
water resource. The remaining players continue the bargaining process. Lexicographical
priority is an extreme form of bargaining power, upstream users have less flexibility in
proposing than downstream users and the commitment to be excluded (or to refrain) from
future bargaining is a too strong assumption. Clearly, there is a need for a more realistic
bargaining perspective.

The literature on bargaining does provide a general theory based upon arbitrary dis-
tributions of bargaining power. Because International Water Law states that countries
should mutually agree on the water allocation, unanimity among these countries is re-
quired. This makes the asymmetric Nash bargaining solution (hereafter, ANBS) a natural
candidate for analyzing the river sharing problem. The ANBS has been axiomatized in
e.g., Kalai (1977), Kaneko (1980) and Herrero (1989), and it is supported by strategic bar-
gaining models in e.g., Herrero (1989), Miyakawa (2006), Laruelle and Valenciano (2008)
and Herings and Predtetchinski (2010). Application of the ANBS to the river sharing
problem with only two agents, an upstream and a downstream agent, can be found in
e.g., Houba (2008) and Houba et al. (2013). In this chapter, we generalize this approach
to a general river geography with multiple agents.

As noticed in Houba (2008), legal principles not only restrict the negotiations to una-
nimity bargaining, but also have implications for the countries’ strategic possibilities as
long as they do not cooperate, i.e., the disagreement outcome. In this chapter, we apply
the ATS principle and the UTI principle as the guiding principles for individual countries
in case of disagreement. For UTI, we discuss two interpretations: a strict interpretation
in which only the most downstream country is allowed to use water; and an interpretation
in which each country claims UTI. The ATS and strict UTI imply different disagreement
outcomes that are both feasible. Under the second UTI interpretation the vector of indi-
vidual aspiration levels under disagreement is infeasible and yields a utopia point. And
agreement can only be reached if the countries are willing to compromise on these levels.
In Mariotti and Villar (2005), the Nash rationing solution is given and axiomatized to
study compromise situations in which unanimity is required. Their solution is symmetric,
possibly multi-valued and always contains the maximizers of a modified Nash product
over the Pareto frontier. For situations with transferable utility, the Nash rationing so-
lution is unique and coincides with the unique maximizer. In this chapter, we propose a
modification of the Nash rationing solution to allow for asymmetries.

We model multiple agents along a general river structure that is expressed by a geog-
raphy matrix and who have access to limited local resources as in e.g., van den Brink et
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al. (2012) and Ansink and Houba (2012). Each agent has quasi-linear preferences over
water and money, where the use of water yields a net benefit being the difference of the
benefit of water use and the cost of water extraction. The extraction costs depend upon
the amount of the available water and the amount of extraction. Maximizing the net
benefits yields a satiation point that depends on the available amount of water and this
generalizes Ambec and Ehlers (2008) in which the satiation point is fixed.

Compared to the current literature, this chapter makes several contributions.

First, translating the ATS principle and the two interpretations of the UTI principle
into individual levels of welfare under disagreement, we arrive at three different cases. In
the ATS and the strict UTI case the vector of disagreement levels is feasible and serves as
the different disagreement outcomes in the ANBS. Different legal principles define different
property rights, and therefore the associated ANBS outcomes will also be different and
allow an interpretation in terms of a shift in property rights. We also characterize the
negotiated welfare distribution.

Second, we revisit the political economy of establishing property rights through the
different legal principles of ATS and strict UTI. Rational agents are forward looking
and are not interested in these legal principles as such, but rather how these affect the
negotiations and the final agreement. Whatever the political process in which agents
decide on property rights before negotiating joint river management, each agent tries to
invoke the legal principle that serves his best interest. According to common intuition,
in the two-agent case the most downstream agent always prefers the strict UTI principle,
because it gives him the right to claim all water inflows along the river, and the upstream
agent prefers ATS, because it gives him the right to claim his own water inflow. For
the n-agent case, our analysis confirms this common intuition for the most downstream
agent, while at least one of the other agents prefers the ATS principle. However, other
than the common intuition for the two-agent case, in the n-agent case other agents besides
the most downstream agent may prefer the strict UTI principle above the ATS principle,
which reverses the common intuition. It appears that strong bargainers amongst the other
agents may prefer the strict UTI principle.

Third, since the individual aspiration levels are infeasible under the strict interpreta-
tion of UTI, we apply to this situation the asymmetric Nash rationing solution (hereafter,
ANRS). The asymmetric weights in this solution cannot be interpreted as bargaining
weights, because a larger weight yields a lower welfare. Instead, it is intuitive to interpret
these weights as responsibility weights. Mathematically the ANRS has many similarities
with the ANBS, but we show by means of an example that at the ANRS some agents
might receive a welfare that is below what could be obtained by blocking agreement,
i.e., refrain to use water and nonparticipation in the negotiations, which would yield zero
payoffs. To avoid such outcomes, we propose to add participation constraints to the asym-
metric Nash rationing problem. These constraints can also be justified by modelling a
ratification process that takes place after the negotiations are concluded.

Fourth, we show that the maximization of the (modified) Nash products is separable
into two subproblems: the efficient water allocation that maximizes utilitarian welfare
and that can be related to the geography matrix; and the monetary transfer associated
with the bargaining weight. In order to derive general formulas that are also applicable if
the consequences of other legal principles from International Water Law are studied, we
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analyze the ANBS, respectively ANRS, under unspecified disagreement (utopia) points.

This chapter is based on Houba et al. (2014b) and is organized as follows. In Section
3.2, we specify the river sharing model and introduce the general river geography. Then,
in Section 3.3, we discuss several legal principles and translate them into either a disagree-
ment point or a utopia point. In Section 3.4, we first analyze the ANBS for unspecified
disagreement points and show that the maximization is separable into two subproblems,
before analyzing specific disagreement points associated with the mentioned legal princi-
ples. In Section 3.5, the individual aspiration levels are analyzed from a Nash rationing
perspective. Section 3.6 contains two numerical examples and Section 3.7 concludes this
chapter.

3.2 Model specification

We consider a river that flows through a finite set of locations, for instance cities, agri-
culture communities, industrial facilities or countries, at which water is extracted from
the river. These locations are called agents and the set of agents is denoted by N =
{1, 2, ..., n}, where n ≥ 2 is the number of agents.

The river geography is represented by a graph with the agents as its nodes. For the
ease of exposition we only consider directed trees, where the root of the tree represents the
most downstream agent, numbered by n, and arcs are directed to the root. This collection
of possible river geographies includes the linear river in Ambec and Sprumont (2002) and
rivers that originate at multiple springs, which merge together downwards into a single
stream, as considered in e.g., van den Brink et al. (2012) and Ansink and Houba (2012).
The last reference discusses extensions that allow for rivers with a delta, multiple users
per location and enforceable legal entitlements, which would apply to interstate transfers
as in e.g., Heintzelman (2010). All of our results can be adjusted in a straightforward
manner because they do not affect the mathematical structure of the model.

Every agent located downstream to agent i is said to be a successor of i and we denote
the set of all successors of i by Si. Because n is the root of the tree, we have Sn = ∅ and
Si 6= ∅ for all i 6= n. Similarly, the set P i denotes the set of all predecessors of i located
upstream of i along the river. An agent i has P i = ∅ if and only if i is located at a spring
or source of the river. Furthermore, we notice that P n = N \ {n}.

The natural water inflow, possibly zero, at the territory of agent i, i ∈ N , is denoted by
ei and the amount of water used by agent i is denoted by xi. Furthermore, all predecessors
of agent i could potentially transfer water to i, whereas i could possibly transfer water to
his successors. The amount of water available for agent i is given by fi = ei +

∑
j∈P i(ej −

xj), which consists of his own local water resource ei plus the inflow of water that his
predecessors transfer to i. Since water only flows from upstream to downstream and inflow
at successors of i can not be allocated to i, the water use of agent i is constrained by
xi ≤ fi. In the sequel we denote e = (e1, . . . , en)> ∈ Rn

+ as the vector of natural inflows,

x = (x1, . . . , xn)> ∈ Rn
+ as the vector of water uses and f = (f1, . . . , fn)> ∈ Rn

+ as the
vector of constraints.

Because it might be convenient to work in matrix notation, we model the river ge-
ography by the n × n matrix R with components Rji given by Rji = 1 if j ∈ Si ∪ {i},
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and Rji = 0 otherwise, which follows Ansink and Houba (2012). Using this allows us to
rewrite the vector f of available water and all water constraints x ≤ f as

f = e+ (R− I) (e− x) , respectively, Rx ≤ Re. (3.1)

Note that (3.1) specifies a non-empty and convex set in the (x, f)-space. The next example
illustrates our notation.

Example 3.1. Consider a river with two springs at locations 1 and 2 that merge together
at location 3 before it flows through location 4. The river geography is represented by

R =


1 0 0 0
0 1 0 0
1 1 1 0
1 1 1 1

 .
For instance, since water from location 1 can be used in locations 1, 3 and 4, the first
column of R is given by (1 0 1 1)>. The (in)qualities for water inflows and feasibilities
(3.1) imply the (in)equalities

f1 = e1
f2 = e2
f3 = e3 +

∑2
j=1 (ej − xj)

f4 = e4 +
∑3

j=1 (ej − xj)

 and


x1 ≤ e1
x2 ≤ e2∑3

j=1 xj ≤
∑3

j=1 ej∑4
j=1 xj ≤

∑4
j=1 ej

 .
�

By the tree structure of the river geography, we have the following two properties on
the matrix R.

Property 3.1.
(i) If Rji = 1, then Rij = 0.
(ii) If Rji = 1 and Rki = 1, then either Rkj = 1 or Rjk = 1.

The first property reflects that if water can flow from agent i to j 6= i, then it is
impossible that the water flows from j to i. This rules out locations that have a local
common pool, for instance situations in which the river is the common border between
two countries. The second property reflects that we don’t allow that the river splits into
a delta, i.e., each agent i 6= n has precisely one downstream neighbor. This is ruled out,
because otherwise additional information is needed regarding how the water flow divides
amongst different branches, which may depend on geographical factors, for instance the
differences in altitude along the several branches, as well as the flow level at the point of
splitting.

Given the constraints Rx ≤ Re on the use of water, each agent along the river chooses
an amount xi of water use for industrial production, residential use, irrigation etc. An
amount xi yields benefits of the water use and costs of water extraction for each agent.
Agent i’s cost depends upon the amount of water extraction xi and the available water
fi.
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Assumption 3.1. Agent i ∈ N has a benefit function bi : R+ → R+ with the property
that b

′
i > 0, b

′′
i < 0 and bi(0) = 0.

Assumption 3.2. Agent i ∈ N has a cost function ci : R2
+ → R+ with the property that

∂ci
∂fi

< 0, ∂ci
∂xi

> 0, ∂2ci
∂x2i

> 0, and ci(fi, 0) = 0 for all fi ≥ 0.

The inequality ∂ci
∂fi

< 0 means that water use of upstream agents generates negative
externalities for downstream agents. The costs of extraction are decreasing in the amount
of available water, i.e., more use of water by the predecessors of agent i and thus a decrease
of fi results in higher extraction costs for the same amount xi. So a decrease in fi yields
an upward shift of the entire cost function, except at xi = 0. The conditions on the first
and second derivative of ci to the extraction xi of water imply that the cost function is
convex in agent i’s own water use. Finally, we assume that zero extraction yields zero
costs, independent of fi. This assumption is merely made for convenience in Section 3.5
where it implies zero utility from inaction or nonparticipation in an agreement. None of
our other results in this chapter depends upon our assumption that zero extraction yields
zero costs.

We further assume that utility is transferable in the sense that agents are able to
transfer utility to each other by making monetary transfers. The monetary transfer to
agent i is equal to ti ∈ R. A positive transfer ti > 0 means that agent i receives money
and ti < 0 means that agent i has to pay |ti|. A monetary transfer scheme is a vector
t = (t1, . . . , tn) ∈ Rn such that there is no financial deficit:

∑n
i=1 ti ≤ 0.

The utility of agent i depends on xi, fi and ti and is given by the quasi-linear utility
function

ui(fi, xi, ti) = bi(xi)− ci(fi, xi) + ti,

where bi(xi) − ci(fi, xi) is the net benefit of the water use xi at fi. Notice that by our
assumptions, the net benefit bi(0)− ci(fi, 0) of inaction is equal to zero for every fi ≥ 0.
Maximizing the net benefit yields the first-order condition

∂bi
∂xi
− ∂ci
∂xi

= 0.

In case this equation has a solution, then it is the satiation point of agent i and this
satiation point, say si(fi), depends on fi.

In summary, the river sharing model is fully represented by the quadruple (N,R, u, e),
where N denotes the set of agents, R is the river geography, u is the collection of utility
functions {ui}i∈N and e is the vector of local water resources. In the remainder of this
chapter, we assume that each agent in this model is a rational utility maximizer and that
all benefit functions, cost functions and water resources are common knowledge.

The maximal utilitarian welfare is obtained by maximizing the sum of all net benefits,
so by solving the optimization problem

max
x,f≥0

n∑
i=1

ui(fi, xi, 0) s.t. (in)-equalities (3.1). (3.2)

The global maximum value, denoted by w, is unique. Since individual utilities are trans-
ferable through the monetary transfers, the utility possibility set is given by U = {u ∈
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Rn|
∑n

i=1 ui ≤ w}, see e.g., Mas-Colell et al. (1995), p.325. Therefore, the global maxi-
mum value w at a solution of problem (3.2) describes what can be achieved in the river
sharing problem (N,R, u, e) in terms of welfare. Note that without additional assump-
tions on the benefit and cost functions, optimization program (3.2) may admit multiple
maximizers to support w. Since the uniqueness of w drives our analysis, for ease of dis-
cussion and to relieve the notational burden, in the sequel of this chapter we restrict
ourselves to cases with a unique maximizer. In fact, since (3.1) specifies a convex set in
the (x, f) space, uniqueness of the maximizer is guaranteed if all cost functions ci(fi, xi)
are strictly convex in (f, x) in addition to Assumption 3.1 and 3.2. We denote the unique
maximizer by (xUW , fUW ).

Furthermore, it might be that xUWi = 0 for all i < n, i.e., welfare is maximized at zero
extraction by all agents 1, . . . , n− 1. However this seems to be unrealistic in practice and
also for ease of analysis we exclude this case.

Assumption 3.3. For at least one agent i = 1, . . . , n− 1, it holds that xUWi > 0.

Our framework captures some of the influential models of the river sharing problem.
Ambec and Ehlers (2008) assume that the (net) benefit function only depends on xi, is
strictly concave and might have a satiation point si. Under our assumptions, the concavity
of the benefit function bi and the convexity of the cost function ci in xi yield a concave
net benefit function in xi that might have a satiation point. Since the cost function ci
depends on the available water resources fi, the satiation point si(fi) also depends upon
fi, so our model generalizes Ambec and Ehlers (2008).

Our model can also be interpreted in terms of pollution externalities. For instance, van
der Laan and Moes (2012) incorporate pollution in the benefit function and the cost func-
tion. In their model, an agent’s cost function depends on accumulated own pollution and
the pollution of all his upstream agents. If we treat water use as positively correlated with
pollution and some convex function ĉi : R+ → R+ defines the cost function ci (fi, xi) =
ĉi (fi − xi), then ci depends upon accumulated water use

∑
j∈P i∪{i} xj, which is identi-

cal as in van der Laan and Moes (2012). Our cost function generalizes this by allowing
for asymmetric effects between upstream pollution and own pollution, but makes the
additional assumption that the costs are zero when the own pollution is zero.

3.3 Legal principles defining property rights

Legal principles from International Water Law have spurred a new emerging literature in
the river sharing problem following Ambec and Sprumont (2002). In this section, we first
discuss several legal principles that define different property rights regimes for interna-
tional rivers, and then, translate these into our framework. Two dominant principles in
International Water Law are the principle of ‘reasonable and equitable water use’ and the
principle of ‘no significant harm’, see e.g., Salman (2007). In the rhetoric of real negoti-
ations, the nuance underlying these principles often vanishes and the extreme versions of
these principles appear instead: the principle of Absolute Territorial Sovereignty (here-
after, ATS) and the principle of Unlimited Territorial Integrity (hereafter, UTI), which
are also more convenient for modelling. Both of these extreme principles will be discussed
in a separate section.
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3.3.1 Absolute Territorial Sovereignty

As introduced in Chapter 1, the ATS principle, also known as the Harmon doctrine, states
that a country has absolute sovereignty over the area of any river basin on its territory: it
may freely decide how much water to use of the water flowing within its borders but cannot
claim the continued and uninterrupted flow from upper basin countries. Alternatively,
ATS also describes situations of ‘laissez-faire’ regulation or anarchy among water users.

In our framework, every agent i has the property rights over his own local water
resource and inflow from upstream under ATS. In this situation, agent i can freely consume
fi. This includes his own local inflow ei and all the unused water from his predecessors
without the obligation to pay any monetary compensation. Starting from the agents i
with P i = ∅, we can recursively solve for the inflows fATSi that will result when all agents
maximize their own net benefits by

fATSi = ei +
∑

j∈P i
(ej − xATSj ), where xATSi = arg max

xi
ui(f

ATS
i , xi, 0), s.t. xi ≤ fATSi ,

(3.3)
where Assumption 3.1 and 3.2 imply uniqueness. The disagreement pair (xATS, fATS)
differs from the unique maximizer (xUW , fUW ) of (3.2), because the ATS does not in-
ternalize the externalities of water use xi on downstream’s benefits of water use nor the
externalities of fi on the cost of extraction. So, there exists a group of at least two agents
who can beneficially trade water to increase utilitarian welfare.

In negotiations, the net benefits associated with these water uses and inflows specify
the disagreement utilities given by dATSi = ui(f

ATS
i , xATSi , 0), i = 1, . . . , n. Since every

agent can guarantee himself a zero net benefit by a zero extraction of water, it holds
that dATSi ≥ 0 for all i. The following result shows that the disagreement point under
the ATS principle yields strictly less welfare than the maximal utilitarian welfare w as
defined in (3.2). The proofs of the results in this chapter are deferred to the appendix of
this chapter.

Proposition 3.1. In the river model (N,R, u, e) it holds that
∑n

i=1 dATSi < w.

A final remark concerns the econometric estimation of all benefit functions, all cost
functions and the vector dATS = (dATS1 , . . . , dATSn ) of disagreement utilities. Such estima-
tion is possible in applications where it is a priori known that all agents conform to ATS
and time-series data for x, f , e and values for costs and benefits are observed. Further-
more, this estimation will be performed on (3.3). Such estimation has been performed
in e.g., Fernandez (2002) and the references therein. Due to a lack of data, Houba et al.
(2013) resort to calibration in their static annual two-season model.

3.3.2 Unlimited Territorial Integrity

As introduced in Chapter 1, the UTI principle states that a country has the right to
demand the natural flow of an international river into its territory that is undiminished
in quantity and unchanged in quality by the upstream countries. Incorporating it into
our framework, an upstream agent is only allowed to consume water if he has the explicit
consent of all his downstream agents. As recognized in e.g., McCaffrey (1996, 2001), when
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all agents invoke the UTI principle, UTI itself becomes self-contradictory. In the case of
one upstream and one downstream agent, when both agents invoke the UTI principle, the
local water resource on the territory of the upstream agent is claimed by both, leading
to inconsistency. In the following discussion, we consider two interpretations of the UTI
principle: according to the first strict interpretation, only the most downstream agent
may claim all water inflows, in the second interpretation the UTI principle is invoked by
all agents.

3.3.2.1 Strict UTI

The UTI principle clearly favors downstream agents over upstream agents. Hence, in
practice, the UTI principle has often been invoked by downstream agents. In this section,
we take the most restrictive case under the UTI principle, namely that only the most
downstream agent may claim all the water of the river and can restrict all his predecessors
to zero extraction as long as no agreement has been reached.

Formally, the disagreement utilities are obtained as follows. For every agent i =
1, 2, ..., n − 1 we have that under disagreement xUTIi = 0, thus the disagreement flows
are given by fUTIi = ei +

∑
j∈P i ej. For the most downstream agent n, we have that

fUTIn =
∑

j∈N ej and xUTIn is the solution to the maximization problem

xUTIn = arg max
xn

bn(xn)− cn(fUTIn , xn), s.t. xn ≤ fUTIn , (3.4)

where uniqueness is guaranteed by Assumption 3.1 and 3.2. This gives the disagreement
utilities dUTIi = ui(f

UTI
i , 0, 0) = 0 for agents i = 1, . . . , n−1 and dUTIn = un(fUTIn , xUTIn , 0) =

un(
∑

j∈N ej, x
UTI
n , 0) > 0. The disagreement utilities under the strict UTI principle yield

strictly less welfare than the maximal utilitarian welfare w. We state the following result
without proof,1 and the strict inequality is implied by Assumption 3.3 that (xUW , fUW )
and (xUTI , fUTI) are unequal.

Proposition 3.2. In the river model (N,R, u, e) it holds that
∑n

i=1 d
UTI
i < w.

Since
∑n−1

i=1 dATSi ≥ 0 =
∑n−1

i=1 dUTIi and dATSn < dUTIn , agent n has a strictly better
bargaining position under UTI than under ATS and the other agents have a reverse order
with respect to their bargaining positions. However, the final utility also depends on the
net surplus (i.e., the welfare from cooperation minus the sum of disagreement utilities).
In the next section, we will clarify how these two effects determine the final utility for
each agent.

Under strict UTI, it might happen that xUTIn < fUTIn , so xUTIn = sn(fUTIn ) = sn(
∑

j∈N ej),
i.e., agent n extracts his satiation level of water and leaves some of the total flow

∑
j∈N ej

unused. This raises the issue whether agent n’s predecessors should be allowed to use
water. The answer is negative. An intuitive explanation is that any water use by the
upstream agents generates negative externalities on the most downstream agent in the
sense of decreasing his water inflow, hence increasing his extraction cost. Indeed, denoting

1The proof is similar to the proof of Proposition 3.1.
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x̂n as the solution of maxxn≤fUTI
n −x−n

bn(xn)− cn(fUTIn − x−n, xn), where x−n > 0 denotes
the aggregate water use amount by the predecessors of agent n, it follows that

bn(x̂n)− cn(fUTIn − x−n, x̂n) < bn(x̂n)− cn(fUTIn , x̂n) ≤

max
xn≤fUTI

n

bn(xn)− cn(fUTIn , xn) = bn(xUTIn )− cn(fUTIn , xUTIn ),

and the strict inequality comes from the fact that cn(fn, xn) decreases when the water
inflow fn increases. Therefore, as long as no agreement has been reached, the most
downstream agent will invoke his property rights on all the water resources and forbids
his predecessors to consume any water.

In contrast to the ATS case, econometric estimation is only possible for the most
downstream agent in applications where time-series data for x, f , e and values for costs
and benefits are observed that conform to strict UTI. Then, similar as before, the esti-
mation for agent n will be performed on (3.4). This suffices to obtain an estimate for the
vector dUTI = (0, . . . , 0, dUTIn ) of disagreement utilities.

3.3.2.2 Individual aspiration levels

Ambec and Sprumont (2002) define agent’s i individual aspiration level as the maximal
welfare that i would be able to achieve in the absence of all other agents, i.e., when agent i
would be able to use the entire water inflow fUTIi at his own territory and the territories of
all his upstream agents.2 As noticed before, the individual aspiration levels are infeasible
when the river contains at least two agents and the agents have to compromise on their
aspiration levels in order to reach agreement. Despite infeasibility, individual aspiration
levels often provide important reference points for individual decision makers. Also, Locke
(1948) (see page 24) wrote: ”Now, of those good things which nature hath provided in
common, every one had a right, as hath been said, to as much as he could use, and
property in all he could effect with his labor; all that his industry could extend to, to
alter from the state nature had put it in, was his.” In this tradition, each agent has a
legitimate right to the individual aspiration level, but not to more.

Formally, when all agents invoke the UTI principle, the individual aspiration levels
are obtained as follows. For every agent i, the inflow under disagreement fASPi coincides
with fUTIi , i.e., fASPi = ei +

∑
j∈P i ej, and the individual aspiration water use of agent i

is given by

xASPi = arg max
xi

bi(xi)− ci(fASPi , xi), s.t.xi ≤ fASPi , (3.5)

where uniqueness is guaranteed by Assumption 3.1 and 3.2. This gives the aspiration-level
utilities dASPi = bi(x

ASP
i ) − ci(fASPi , xASPi ) ≥ 0 for all agents i ∈ N . Notice that for all

agents i located at a source of the river, i.e., P i = ∅, we have dUTIi = 0 < dASPi = dATSi ,
for all ‘middle’ agents i ∈ N\ {n ∪ i : P i = ∅} we have dUTIi = 0 ≤ dATSi < dASPi , and
only for the most downstream agent n we have dATSn < dASPn = dUTIn . The following result
extends the infeasibility of individual aspiration levels in Ambec and Sprumont (2002).

2Note that Ambec and Sprumont (2002) also define group aspiration levels for coalitions of agents,
which does not appear in our analysis.
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Proposition 3.3. In the river model (N,R, u, e) it holds that
∑n

i=1 d
ASP
i > w.

Although time-series data for inflows fASP can be trivially constructed from time-
series data of e, the infeasibility of individual aspiration levels implies that no time-series
data for xASP will ever be observed in reality. However, in case it is a priori known that
reality conforms to ATS and time-series data for x, f , e and values for costs and benefits
are observed, then econometric estimation as discussed in Section 3.3.1 is possible. From
these estimations the aspiration-levels of water extraction xASP and the aspiration-level
utilities dASP = (dASP1 , . . . , dASPn ) can be computed.

3.4 The ANBS in the river sharing problem

Agents can improve on the inefficient disagreement outcomes associated with the princi-
ples of ATS, respectively strict UTI, by unanimity bargaining for joint river management.
In this section, we apply the ANBS in order to mimic the outcome of such negotiations.
This modeling choice can be justified by referring to the 1997 UN Convention that re-
quires consent by all countries in the river basin. It is widely accepted that the ANBS
captures unanimity bargaining.

We first establish the ANBS for a general river problem (N,R, u, e) with some maxi-
mum welfare w and an unspecified vector d of disagreement utilities with

∑
i∈N di < w.

Next, we show that by the quasi-linear utilities of the agents the problem to find the ANBS
can be decomposed into two smaller subproblems that facilitates its computation: first
the utilitarian welfare maximum is computed yielding the efficient water use and second
the monetary transfers according to the ANBS are computed. This gives a closed-form
solution for the transfers. Finally, we discuss the political economy of property rights by
analyzing the ANBS for disagreement utilities associated to the principles of ATS and
strict UTI.

3.4.1 The bargaining solution

The origin of the asymmetric distribution of bargaining weights among all agents, as
assumed by the ANBS, is outside the scope of the ANBS and is part of the axiomatization
of the ANBS in e.g., Kalai (1977). In economic applications bargaining weights are often
related to GDP, population sizes, political factors, military powers etc. This reflects
that countries with, say, a larger GDP have much more at stake internationally as well
as more financial means to maintain a large and well-trained corpse of diplomats and
negotiators, or a large army to conduct geopolitics. The strategic bargaining literature
underpins bargaining weights as either the probability of setting the agenda in random
proposer bargaining or the differences in individual time-preferences, see e.g., Herrero
(1989), Miyakawa (2006), Laruelle and Valenciano (2008) and Herings and Predtetchinski
(2010). We regard the ANBS as a positive theory reflecting some underlying bargaining
process.

Formally, the agents’ bargaining weights are given by a vector α = (α1, ..., αn), where
αi ≥ 0 and

∑
i∈N αi = 1. In this section we further assume the disagreement utilities as

exogenously given and impose that every agent i has a disagreement utility di ≥ 0 and
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that
∑

i∈N di < w, where w is the maximum welfare that the agents can obtain in the
river model (N,R, u, e). The nonnegativity condition is natural given that inaction gives
zero utility. Given w and the vector d, the bargaining set consists of all utility vectors
u ∈ Rn that are individually rational, thus ui ≥ di for all i, and feasible, thus the sum of
components is at most equal to w.

The ANBS seeks to maximize the asymmetric Nash product
∏n

i=1(ui(fi, xi, ti)− di)αi

under the constraints that the vector of water uses x ∈ Rn
+, the vector of inflows f ∈ Rn

+

and the vector of monetary transfers t ∈ Rn are feasible. This gives the following problem

maxx,f≥0;t
∏n

i=1

(
bi(xi)− ci(fi, xi) + ti − di

)αi

s.t. f = e+ (R− I)(e− x)
Rx ≤ Re, (p) and

∑n
i=1 ti ≤ 0, (λ)

bi(xi)− ci(fi, xi) + ti ≥ di, i = 1, . . . , n

 , (3.6)

where p ∈ Rn and λ are the Lagrange multipliers for the water resource constraints and
monetary transfers, respectively. Similar as for utilitarian welfare maximization, without
additional assumptions on the benefit and cost functions, optimization program (3.6) may
admit multiple maximizers. Again for ease of discussion and to avoid notational burden,
we restrict ourselves to cases with a unique maximizer.3 We have the following result.

Theorem 3.1. Let x∗, f ∗ = e + (R− I) (e− x∗) and t∗ be the water allocation, the
vector of inflows and the monetary transfers in the ANBS for the river sharing problem
(N,R, u, e). Then x∗ and f ∗ satisfy the first-order conditions

G = R>P − (R− I)>F, (3.7)

with G =


b′1 (x1)− ∂c1(f1,x1)

∂x1

b′2 (x2)− ∂c2(f2,x2)
∂x2

...

b′n (xn)− ∂cn(fn,xn)
∂xn

 , P =


p1
λ
p2
λ
...
pn
λ

 and F =


∂c1(f1,x1)

∂f1
∂c2(f2,x2)

∂f2
...

∂cn(fn,xn)
∂fn

 ,

and t∗ is given by t∗i = αi
∑n

j=1

[
bj(x

∗
j)− cj(f ∗j , x∗j)− dj

]
− [bi(x

∗
i )− ci(f ∗i , x∗i )− di], i =

1, ..., n.

Note that the matrices R and R− I defining the constraints in (3.6) reappear in (3.7),
which relates the river geography directly to the ANBS. We can distinguish the effects of
resource scarcity (P ) from the effects of inflows on the cost of extraction (F ).

Theorem 3.1 shows that the monetary transfer paid or received by agent i depends on
his bargaining weight αi of the aggregate net surplus

∑n
j=1

(
bj(x

∗
j)− cj(f ∗j , x∗j)− dj

)
from

cooperation minus his own improvement from cooperation bi(x
∗
i )− ci(f ∗i , x∗i )−di. Clearly

his transfer is increasing in his bargaining weight, i.e., agent i pays less or receives more
if he is assigned a larger bargaining weight since

∑n
j=1

(
bj(x

∗
j)− cj(f ∗j , x∗j)− dj

)
> 0.

Next we turn to Equation (3.7). For agent i, b′i and ∂ci
∂xi

are the marginal benefit of

water use and the marginal cost of water extraction, respectively. Hence, b′i − ∂ci
∂xi

is his

3Here (3.6) specifies a convex set in the (x, f) space and the asymmetric Nash product function is
strictly quasi-concave in utilities.
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marginal net benefit of water extraction. Noticing that Rji = 1 if and only if j ∈ Si∪{i},
it follows that the i-th row of System (3.7) can be written as

b′i −
∂ci
∂xi

=
n∑
j=1

Rji
pj
λ

+
n∑

j=1,j 6=i

−Rji
∂cj
∂fj

=
∑

j∈Si∪{i}

pj
λ

+
∑
j∈Si

−∂cj
∂fj

=
∑

j∈Si∪{i}

pj
λ

+
∑
j∈Si

∂cj
∂fj

∂fj
∂xi

, (3.8)

where the last equality comes from the fact that fj = ej+
∑

i∈P j(ei−xi) and thus
∂fj
∂xi

= −1

for j ∈ Si.
First notice from Equation (3.8) that the marginal net benefit of agent i in the optimum

is independent of the bargaining weights α. Next notice that the first term of the right-
hand side of (3.8) shows the impact that agent i imposes upon the physical availability
of water for his successors. It reflects the resource scarcity of water for agent i and all
his successors through the shadow prices p of the the local resource constraints Rx ≤ Re,
where pj > 0 if xj ≤ fj is binding, j ∈ N . For agent i this term drops out if x∗j < f ∗j for all
j ∈ Si∪{i}, i.e., neither the constraint of i nor any of his successors’ constraint is binding.
If x∗j = f ∗j for some j ∈ Si ∪ {i}, then pj decreases when more local water resource ej
becomes available. When pk = 0 for all k = i and all agents k between i and j (and
thus all the corresponding constraints are not binding), then the marginal net benefits of
agent i, agent j and all agents between them will decrease because all these agents could
consume some more water when more local water resource ej becomes available. On the
other hand, when pk > 0 for k = i or some agent k between i and j, then a higher local
resource ej does not allow agent i to consume more water and so the marginal net benefit
of i does not change. More water inflow ej and thus a lower pj then induces a higher
price pk for agent k = i or at least one other agent k between i and j. In this case more
local inflow at j induces a higher shadow price, so relatively more scarcity, for at least
one agent upstream of j.

The second term of the right-hand side of (3.8) is the sum of all externalities that

agent i imposes upon the costs of extraction of all his successors. By assumption
∂cj
∂fj

< 0

and thus
∂cj
∂fj

∂fj
∂xi

> 0 for every successor j of i. So, the negative externalities on the

extraction costs of his successors lead to higher marginal net benefit for agent i. Hence,
the consumption x∗i in the optimum is lower than what i would like to consume when he
is maximizing his own net benefit.

Since every individual term in the summation of the second right-hand term of Equa-
tion (3.8) is strictly positive and Sj ⊂ Si if j ∈ Si, the next proposition holds, showing
that the marginal net benefits are decreasing from upstream to downstream.

Proposition 3.4. In the ANBS water allocation x∗ of the river sharing problem (N,R, u, e),

for every i ∈ N and j ∈ Si it holds that b′i − ∂ci
∂xi

> b′j −
∂cj
∂xj

.

The intuition is that, the closer agent i is located to one of the sources of the river,
the more downstream successors experience such negative externalities from using an
extra drop of water by agent i. Only the most downstream agent does not induce these
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externalities. Similarly, if agent i experiences water scarcity, i.e., pi > 0, then all of
his predecessors also experience water scarcity and this positive shadow price pi will
show up in their right-hand side of (3.8). This implies that the closer agent i is to the
most-downstream location, he will have larger sets of predecessors and this agent’s water
scarcity is felt by more upstream agents.

Defining bsi = b′i − ∂ci
∂xi
−
∑

j∈Si
∂cj
∂fj

∂fj
∂xi

as the societal marginal net benefit of agent i,

i.e., his own marginal net benefit minus the impact of xi on the marginal extraction costs
of his successors, we obtain by rearranging (3.8) that

bsi =
∑

j∈Si∪{i}

pj
λ
, i ∈ N. (3.9)

It follows immediately that the societal marginal net benefits are nonincreasing from
upstream to downstream and they are all equal to each other if and only if pi = 0 for all
i < n.

Corollary 3.1. In the ANBS water allocation x∗ of the river sharing problem (N,R, u, e),
for every i ∈ N and j ∈ Si it holds that bsi ≥ bsj with at least one strict inequality if and
only if pj > 0 for some j 6= n.

The above results generalize the results in Kilgour and Dinar (2001) and Ambec and
Sprumont (2002) for the linear river sharing problem to general river geographies captured
by R and externalities on the cost of extraction. They observe, as stated in Ambec and
Sprumont (2002), that ”the marginal benefits decrease (weakly) as one moves downstream
and, if two agents have different marginal profits, some constraint must be binding between
them.” Corollary 3.1 shows the same result for the societal marginal net benefits, which
include the marginal own extraction costs and the negative marginal externality costs of
extraction on the successors of an agent. Finally, we remark that ANBS x∗ and f ∗ cannot
be implemented by a uniform water price.

3.4.2 Decomposition of the computation of the ANBS

In this section, we decompose the ANBS into two separate subproblems of which one has
a closed-form solution. The first subproblem immediately arises from the following result.
The water uses and inflows of the ANBS coincide with the utilitarian welfare maximizing
water uses and inflows.

Theorem 3.2. Let (x∗, f ∗, t∗) be the ANBS for the river sharing problem (N,R, u, e).
Then, x∗ = xUW , f ∗ = fUW .

The theorem implies that the aggregate net surplus
∑n

i=1 [bi(x
∗
i )− ci(f ∗i , x∗i )− di] at

the ANBS is equal to the aggregate net surplus w−
∑n

i=1 di resulting from maximizing the
utilitarian welfare. The intuition of this result is rather straightforward. One of the axioms
of the ANBS requires Pareto efficiency and quasi-linear utility functions induce the utility
possibility set U = {u ∈ Rn|

∑n
i=1 ui ≤ w}. So, Pareto efficiency implies aggregate utili-

tarian welfare
∑n

i=1 [bi(x
∗
i )− ci(f ∗i , x∗i )] ≥ w and (b1(x

∗
1)− c1(f ∗1 , x∗1), . . . , bn(x∗n)− cn(f ∗n, x

∗
n))
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∈ U implies the opposite weak inequality. This insight extends beyond the current ap-
plication and will hold in general for the ANBS whenever individual utility functions are
quasi-linear. For instance, it also holds in the static annual model with two seasons in
Houba et al. (2013), who consider the externalities of the Mekong River as a green source
of energy.

Theorem 3.2 can be related to the discussion on the Coase Theorem. The most well-
known version states that, in the absence of transaction costs, Pareto efficiency arises
independent of the assignment of property rights. Note that, in terms of axiomatic solu-
tions, the Coase Theorem states a condition under which the efficiency axiom underlying
the ANBS is justified and this axiom is always stated independently of the disagreement
point. Hence, given how property rights are translated into disagreement points, the
efficiency axiom underlying the ANBS is trivially independent of property rights. More
interesting is that the Pareto efficient allocation of water at the ANBS is also independent
of the disagreement point and, thus, independent of property rights. Given that we take
uniqueness of xUW and fUW for granted, we also obtain the invariance version of the
Coase Theorem: in the absence of transaction costs, the same physical allocation arises
through negotiations independent of the assignment of property rights.

As a technical remark, we briefly address the case of multiplicity of maximizers to
utilitarian welfare maximization (3.2) and ANBS (3.6). In that case, the result is that
(xUW , fUW ) is a maximizer of (3.2) if and only if there is a maximizer (x∗, f ∗, t∗) of (3.6)
such that x∗ = xUW and f ∗ = fUW . Furthermore, the invariance version of the Coase
Theorem has that each maximizer is independent of property rights. We do not elaborate
on these technicalities.

Since the maximization of utilitarian welfare already characterizes the Pareto efficient
water uses x∗ and inflows f ∗, the next issue is to determine the transfers that maximize
the Nash product given x∗ and f ∗. We stress once more that unanimity requires that each
agent must obtain at least his disagreement utility, because otherwise agents who get less
will deviate. Without proposing a formal procedure, within our simple framework this
can be thought of as follows. As is common in international negotiations over treaties, the
negotiations result has to be ratified afterwards by all the participants in the negotiations.
If agent i’s utility ui from the treaty is lower than his disagreement utility di, this agent will
not ratify and this will prevent the treaty from being implemented. Ratifying any treaty
that will give an utility at least equal to the disagreement utility and rejecting otherwise,
i.e., ratify if and only if ui ≥ di, is a Nash equilibrium strategy of this ratification process
for every agent i ∈ N . This argument limits the set U of feasible utility vectors to the
bargaining set U IR (d) = {u ∈ U |ui ≥ di, i ∈ N} of all feasible vectors satisfying individual
rationality. Given x∗ and f ∗, the utility of agent i is given by ui(f

∗
i , x

∗
i , ti) = bi(x

∗
i ) −

ci(f
∗
i , x

∗
i ) + ti, which we will write more conveniently as ui(f

∗
i , x

∗
i , ti) = ui(f

∗
i , x

∗
i , 0) +

ti. Successively, we consider the following maximization problem with respect to the
monetary transfers

maxt∈Rn

∏n
i=1(ui(f

∗
i , x

∗
i , 0) + ti − di)αi ,

s.t.
∑

i∈N ti ≤ 0, and ui(f
∗
i , x

∗
i , 0) + ti ≥ di, i ∈ N.

}
. (3.10)

We have the following result.
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Theorem 3.3. Let t̂ be the solution of the maximization problem (3.10). Then, (x∗, f ∗, t̂)
coincides with the ANBS (x∗, f ∗, t∗) for the river sharing problem (N,R, u, e). Moreover,

t̂i = di + αi

(
w −

∑n

j=1
dj

)
− ui(f ∗i , x∗i , 0), i = 1, ..., n.

From Theorem 3.2 and 3.3, it follows that the computation of the ANBS can be
decomposed into two steps: in Step 1, we find the unique maximizer of (3.2) and, then,
we may set x∗ = xUW and f ∗ = fUW . In Step 2, we determine t̂, for which we have a
closed-form solution given the Pareto efficient x∗ and f ∗ of Step 1. Note that we rewrote
the transfer when compared to Theorem 3.1. Agent i’s utility in the ANBS is given by
di + αi(w −

∑n
j=1 dj) and it is equal to the utility ui(f

∗
i , x

∗
i , 0) obtained from the use

of water plus the monetary transfer t̂i. Since the welfare w is larger than
∑n

j=1 dj, the
monetary transfer of agent i is increasing in his bargaining weight αi. In terms of our
previous discussion of the Coase Theorem, the assignment of property rights does have
welfare consequences for the agents through the disagreement point, because each agent’s
utility at the ANBS depends upon the disagreement point and the associated net surplus.
Also the financial transfers depend upon the disagreement point.

Notice that for any agent i the financial transfer t̂i obtained from solving the optimiza-
tion problem (3.10) is increasing in di and decreasing in every dj, j 6= i. A well-known
result from bargaining theory states that an increase in agent i’s disagreement utility
improves this agent’s bargaining position in the negotiations and, keeping the other dis-
agreement utilities fixed, will result in an increase in his final utility. Since the ANBS
satisfies the axiom of Pareto efficiency, agent i’s improvement is at the expense of the
other agents. Or, as our last result states, an increase in agent i’s disagreement utility
decreases each other agent j’s final utility.

Although we treat the ANBS mainly as an approximation of the outcome of nego-
tiations, it also has a normative interpretation in which the asymmetric Nash product
is interpreted as a social welfare function, see e.g., Kaneko (1980). This interpretation
requires a central agency with the authority to both impose and enforce policies, who
evaluates river sharing policies according to such social welfare function, is able to assess
all agents’ true costs and benefit functions and assigns weights among the agents. The
ANBS might be implemented by either quantity restrictions on water uses or regulation
of water prices. Besides, the central agency should also have the authority to set the
appropriate monetary transfers among agents through lump-sum taxes or subsidies. A
potential institutional setup might be that the central agency decentralizes its policy to
local governments. Then the local governments set local consumer prices and local pro-
ducers claim their producer prices to local governments. All are according to the efficient
allocation scheme set by the central agency. These institutional conditions are rather
restrictive and seem to be more natural to guide water sharing among cities or states
within a country. Nevertheless, proper application of the ANBS ensures a win-win policy
because the central agency’s optimal policy will be individual rational for all agents along
the river, albeit that the gains may be asymmetrically distributed.

Finally, Chiappori et al. (2011) discuss and resolve several methodological issues
in estimating and testing the Nash bargaining solution in economic applications. One
key result is that imposing additional restrictions is necessary to recover the underlying
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structure of the Nash bargaining solution, in particular to estimate the utility functions
and disagreement points. In our model, the assumption of quasi-linear utility functions
provides such a restriction that allows for the decomposition discussed earlier and this
decomposition enhances econometric estimation.

3.4.3 The political economy of property rights

In this section, we specify the disagreement utilities d ∈ Rn according to the different legal
principles of ATS and strict UTI and we investigate and compare the resulting ANBS
as obtained in the previous sections. These legal principles implicitly assign property
rights among the agents. In any process in which agents decide on property rights before
negotiating joint river management, each agent tries to invoke the legal principle that
serves his best interest.

Recall from Section 3.3.2 that dATSi ≥ 0 = dUTIi for i = 1 . . . , n − 1 and that dATSn <
dUTIn . For explanatory simplicity, we assume in this section that dATSi > 0 for all i < n,
so for all agents except agent n, the ATS disagreement utility is strictly higher than the
strict UTI disagreement utility, only for agent n the opposite holds. However, rational
agents are forward looking and are not interested in the disagreement utilities as such,
but rather how these affect their final utility in the outcome of the negotiations.

By Proposition 3.1 and 3.2, the disagreement points dATS and dUTI both belong to
the utility possibility set U , but the bargaining sets U IR

(
dATS

)
and U IR

(
dUTI

)
of indi-

vidual rational utilities differ. According to Theorem 3.3, the final utilities under ATS,
respectively strict UTI, become

uATSi = dATSi + αi

(
w −

∑n

j=1
dATSj

)
, i = 1, . . . , n, and (3.11)

uUTIi = αi
(
w − dUTIn

)
, i = 1, . . . , n− 1, uUTIn = dUTIn + αn

(
w − dUTIn

)
. (3.12)

From the formulas, we see two effects that can be related to the disagreement point d as
the fall-back position in case the negotiations break down and the net surplus w−

∑n
j=1 dj

that is bargained over. For all upstream agents i = 1, . . . , n− 1, a shift in legal principles
from strict UTI to ATS increases agent i’s fall-back position from dUTIi = 0 to dATSi

and, simultaneously, decreases agent n’s fall-back position from dUTIi to dATSi . So, in
terms of fall-back positions, only agent n prefers the strict UTI principle. In terms of
property rights, the intuition is that upstream agents get more rights over the water
available, whereas the downstream agent looses his monopoly rights. However, the effect
of a shift in legal principles from strict UTI to ATS has an ambiguous effect on the net
surplus. It weakly increases the net surplus whenever

∑n
j=1 d

ATS
j ≤ dUTIn , or

∑n−1
j=1 d

ATS
j ≤

dUTIn − dATSn . The latter inequality means that the aggregate gain in disagreement utility
for agents i = 1, . . . , n− 1 is at most equal to the loss in disagreement utility dUTIn − dATSn

for agent n. A larger net surplus means that the proportional gains from agreement are
also larger and, evaluated in terms of the net surplus, all agents weakly prefer the net
surplus of the ATS principle. Clearly, combining both effects under

∑n
j=1 d

ATS
j ≤ dUTIn

immediately implies that all upstream agents i = 1, . . . , n − 1, prefer a shift in legal
principles from strict UTI to ATS and only the most downstream agent n prefers the
opposite shift. This can also be seen as the common intuition about who along the river
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prefers which of these two legal principles. The following result states the conditions
under which this common intuition reverses for some upstream agents.

Theorem 3.4. Agent n strictly prefers UTI to ATS. Agent i, i < n, strictly prefers

strict UTI to ATS if and only if dUTIn <
∑n

j=1 d
ATS
j and αi >

dATS
i∑n

j=1 d
ATS
j −dUTI

n
.

This result states that the most-downstream agent always prefers the strict UTI prin-
ciple. The intuition is straightforward: this agent becomes the sole owner of all the water
under strict UTI and if other agents want to use water they have to pay agent n. For
the other agents, the answer depends upon their bargaining weights and the sizes of the
net surplus under both legal principles. Since we already discussed common intuition, we
concentrate on the case in which the net surplus under strict UTI is larger than the net
surplus under ATS, i.e., dUTIn <

∑n
j=1 d

ATS
j . Then both effects of shifting legal principles,

being the fall-back position and the net surplus, are opposite to each other and the total
effect is ambiguous. If in addition agent i, i < n, is relatively strong in bargaining, which
is reflected in a large bargaining weight, then this agent prefers the strict UTI principle
as the principle defining initial property rights knowing that his bargaining power will
ensure a share of a larger net surplus under strict UTI that compensates for his lower
fall-back position under strict UTI.

Because agent n always obtains a larger utility under strict UTI when compared to
ATS and the aggregate maximal welfare is w, there is always at least one agent i ( 6= n)
who has to get a lower final utility under strict UTI than under ATS. For an international
river that is shared by two countries, downstream prefers UTI and, consequently, upstream
prefers ATS. For international rivers involving more countries, it is an empirical research
question whether except country n, other countries are also better off under strict UTI
than under ATS and if so, which countries.

3.5 The asymmetric Nash rationing solution

The individual aspiration levels when all agents invoke UTI, as defined in Section 3.3.2.2,
lie above the Pareto frontier of the utility possibility set, hence these levels are infeasible
and cannot be achieved. In this case, we treat the individual aspiration levels as a reference
point in which a consensus among the agents requires each agent to bear some losses with
respect to his aspiration level. The question then becomes on what compromise outcome
the agents agree.

Many compromise solutions exist in the literature. In this section, we focus on Mariotti
and Villar (2005), who study the problem of allocating utility losses among n agents,
called the Nash rationing problem, which can be regarded as the translation of the Nash
bargaining problem to a situation of compromising on utility losses. The Nash rationing
solution is a symmetric set-valued solution and consists of the set of points that maximizes
a weighted sum of utilities, in which weights are endogenously chosen so that all agents’
weighted losses are equal. For problems with transferable utility, the solution is unique
and coincides with the unique maximizer of the Nash rationing product. Translated
into the river sharing problem, this product is defined as

∏n
i=1(d

ASP
i − ui) and the Nash

rationing solution is the unique maximizer of this product over the set of utility vectors
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u ∈ Rn under the constraints
∑n

j=1 uj ≥ w and ui ≤ dASPi , i = 1, . . . , n. Mariotti and
Villar (2005) provide an axiomatization of the Nash rationing solution. The convergence
results of equilibria in strategic bargaining models to the Nash bargaining solution in e.g.
Binmore et al. (1986) indicates that a similar strategic underpinning of the Nash rationing
solution is plausible. In particular, Houba (1997) analyzes fluctuating disagreement points
from which an utopia point is constructed on which agents compromise in equilibrium.

In this section, we propose an asymmetric version of the Nash rationing solution. We
do not provide an axiomatization, but given the similarities in the axiomatization results
for the ANBS and the symmetric Nash rationing solution in Mariotti and Villar (2005), it
is reasonable to conjecture that the asymmetric version with exogenous weights can also
be axiomatized.4 We postpone the interpretation of these weights. Formally, the weights
are given by a vector ρ = (ρ1, ..., ρn), where ρi ≥ 0 and

∑
i∈N ρi = 1. Distinguishing

different notation for weights allows for flexibility.5

Given a weight vector ρ, we define the asymmetric Nash rationing solution (ANRS),
as the solution of the maximization problem

max
(u1,...,un)

n∏
i=1

(dASPi − ui)ρi , s.t.
n∑
j=1

uj ≥ w, and ui ≤ dASPi , i ∈ N.

This convex program admits a unique maximizer, denoted uNRS. Note that uNRSi is the
utility level that each agent gets from the river sharing problem including the monetary
transfer. Similar as before for the ANBS, agent i’s monetary transfer closes the gap
between his direct net benefit from water use ui (x

∗
i , f

∗
i , 0) and his final utility uNRSi . His

transfer is given by tNRSi = uNRSi − ui (x∗i , f ∗i , 0). Similar to Theorem 3.1, we obtain

uNRSi = dASPi + ρi(w −
n∑
j=1

dASPj ), i ∈ N. (3.13)

Since according to Proposition 3.3, w −
∑n

j=1 d
ASP
j < 0, each agent gets a utility level

below his individual aspiration level. Moreover, an agent’s final utility is decreasing in
the weight of the agent. Clearly, an interpretation of ρ in terms of bargaining weights
makes no sense, because then a higher bargaining weight implies the counter-intuitive
result that this agents gets a lower utility. Instead, the weight of an agent represents
the responsibility of this agent, namely the more weight we put on agent i, the more
responsibility this agent has to take in making sacrifices to reach a compromise. More
responsibility results in a lower utility for an agent. Because the utility is decreasing in
the weight, it might even happen that the utility in the ANRS falls below zero that an
agent can guarantee himself by blocking agreement and inaction of refraining from using
water. The following example illustrates this.

Example 3.2. Consider the case that the tributaries originating at location 1 and 2
merge before location 3. The agents’ responsibility weights are given by ρ = (3

5
, 1
5
, 1
5
).

4Personal communication with professor Mariotti confirmed this conjecture.
5For example, responsibility weight ρi may be inversely related to bargaining weight αi.
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The benefit functions, cost functions and water resources are given by,

bi(xi) =
√
xi, ci(xi) = x2i , and ei = 1, for i = 1, 2,

b3(x3) = 16
√
x3, c3(f3, x3) = x23/f3 and e3 = 0.

The maximum utilitarian welfare is w = 20.7341 and by application of (3.5), we ob-
tain dASP = (0.4725, 0.4725, 20.6274)>. Then, formula (3.13) applied to agent 1 implies
uNRS1 = 0.4725 + 0.6(20.7341− 20.6274− 0.4725− 0.4725) = −0.0305 < 0. �

Given that the utility of inaction is 0, the question is whether an agent who has to
compromise on a negative utility according to (3.13) is willing to accept the agreement.
Without his consent, the agreement fails unanimity. In terms of the ratification process
of international treaties mentioned in Section 3.4.2, ratifying any treaty that will give an
utility of at least equal to zero and rejecting otherwise, is a Nash equilibrium strategy
of the ratification process for every agent i ∈ N . Therefore, it is natural and, as our
example makes clear, necessary to impose the participation constraint ui ≥ 0 for every
i ∈ N in the maximization problem to find the Nash rationing solution. Adding the
nonnegativity constraints to the Nash rationing solution complicates the maximization
problem, however similar results obtain, except that now we have a boundary solution.
For the maximization problem including the participation constraints ui ≥ 0, i ∈ N , let
T ⊂ N be the set of agents j ∈ N that receive a utility uNRSj > 0 at the ANBS. Then,
without going into details, we obtain for the Nash rationing solution with nonnegativity
constraints that uNRSi = 0 if i ∈ N \ T , and

uNRSj = dASPj +
ρj∑
k∈T ρk

(
w −

∑
k∈T

dASPk

)
, if j ∈ T. (3.14)

So, the agents in T split the deficit with respect to the total aspiration utilities of the
agents in T according to their relative weights within this group. For T = N , Equation
(3.14) coincides with (3.13).

The econometric estimation of asymmetric Nash rationing can be performed similarly
as discussed in Section 3.4.2, but a modification is needed when binding participation con-
straints are present: after the cost and benefit functions are estimated and time series for
the aspiration level utilities have been constructed, agents corresponding to approximately
binding participation constraints are excluded to obtain the set T . Then, proceeding as
in Section 3.4.2, all weights ρj, j ∈ T , can be estimated from (3.14). For all other weights
ρi, i ∈ N/T , there is some freedom in estimating these weights due to the fact that the
right-hand side of (3.13) is non-positive under the normalization

∑
i∈N ρi = 1.

3.6 Two numerical examples

In this section, we provide two numerical examples to illustrate the ANBS under different
legal principles regarding the disagreement point in the International Water Law.
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3.6. Two numerical examples

3.6.1 Example 1: two agents

Suppose that only two agents are positioned along the river with e1 = 1, e2 = 0 and the
benefit functions and cost functions given by

b1(x1) = 1
4

√
x1, c1(x1) = 1

16
x21, and

b2(x2) = 1
2

√
x2, c2(f2, x2) =

x22
f2
, where f2 = 1− x1.

By application of Theorem 3.2, the maximal utilitarian welfare w = 0.3102 is attained at
x∗1 = 0.55 and x∗2 = 0.15 with associated utilities u∗1 = 0.1665 and u∗2 = 0.1437. Note that
this step does not involve monetary transfers.

Application of Equations (3.11) and (3.12) requires providing the disagreement points
first. Under the ATS principle, application of (3.3) yields the disagreement point dATS =
(0.1875, 0)>. Similarly, under the UTI principle of Section 3.3.2.1, application of (3.4)
yields water uses xUTI1 = 0 and xUTI2 = 0.25 < 1 = fUTIi from which we obtain the
disagreement point dUTI = (0, 0.1875)>. Figure 3.1 illustrates that different disagreement
points give different bargaining sets, where the utility for agent 1 (2) is positioned on the
horizontal (vertical) axis. In this figure, region A is the bargaining set under the ATS
principle. For any pair of bargaining weights, the vector of ANBS utility levels according
to (3.11) end up on the segment cd. Region B is the bargaining set under the UTI
principle of Section 3.3.2.1 and the vector of ANBS utility levels specified by (3.12) end
up on the segment ab. Independent of the bargaining weights, upstream agent 1 always
prefers the ATS principle and downstream agent 2 the strict UTI principle.

In terms of Ambec and Sprumont (2002), the downstream incremental solution satisfies
the ATS principle and no group of agents can achieve more than its group surplus. For
n = 2, their solution maximizes agent 2’s utility while keeping agent 1 at his disagreement
utility under ATS, i.e., u1 = dATS1 = 0.1875 and u2 = w − dATS1 = 0.1227 > dATS2 . This is
point c in Figure 3.1.

If both agents invoke the UTI principle of Section 3.3.2.2, application of (3.5) implies
the unattainable aspiration level dASP = (0.1875, 0.1875)>, as Figure 3.1 illustrates. Given
any pair of responsibility weights, each agent’s utility level in the ANRS follows from
Equation (3.13). In order to reach agreement, each agent has to bear utility losses to end
up on the segment bc.

In the above example, when considering the Nash rationing solution of Mariotti and
Villar (2005), we end up with the middle point of the segment bc which minimizes the
weighted sum of individual losses and weights are chosen so that all individual weighted
losses are equal. In this situation, we have equal weights for both agents, i.e., (1

2
, 1
2
), since

one unit increase of the utility level for agent 1 must decrease the utility level of agent 2
by 1 unit as well.

3.6.2 Example 2: three agents

We continue with Example 3.2 only that we change the benefit function of agent 3 into
b3(x3) =

√
x3, maintain c3(f3, x3) = x23/f3 and that we do not specify the weights. Then,

the maximum utilitarian welfare is given by w = 1.4539. Under ATS, application of (3.3)
yields the disagreement point dATS = (0.4725, 0.4725, 0.5021)>. Under strict UTI, the
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Figure 3.1: The asymmetric Nash solutions for the ATS, strict UTI principle and the
individual aspiration levels in Example 3.6.1 (two agents).

Figure 3.2: The asymmetric Nash solutions for the ATS, strict UTI principle and the
individual aspiration levels in Example 3.6.2 (three agents).
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3.7. Conclusion

Table 3.1: Utilities of the agents under ATS, UTI and ASP

Legal Principles Surpluses or Losses Utility for Agent i, i = 1, 2 Utility for Agent 3
UTI 0.8586 0+αi 0.8586 0.5953+α3 0.8586
ATS 0.0068 0.4725+αi 0.0068 0.5021+α3 0.0068
ASP 0.0864 0.4725-ρi0.0864 0.5953-ρ3 0.0864

disagreement point is given by dUTI = (0, 0, 0.5953)>. The vector of individual aspiration
levels is given by dASP = (0.4725, 0.4725, 0.5953)>. Note that in this situation, we have

dASPi = dATSi , for i = 1, 2; dASP3 = dUTI3 .

In Figure 3.2, we draw the set of possible utility allocations for three agents in the simplex.
The small upward-pointing triangular is the bargaining set under ATS, and under indi-
vidual aspiration levels the bargaining set is the downward-pointing triangular. The large
upper triangle, in which agent 3 gets at least a utility of 0.5953, is the utility bargaining
set under strict UTI.

Given the weights, the Nash solution utilities of the agents under the different legal
principles are given in Table 3.1. From this table, we see that agent 3 always prefers strict
UTI to ATS, which confirms Theorem 3.4. This can also be deduced from Figure 3.2,
where agent 3’s utility in any utility vector in the large upper triangular is larger than
this agent’s utility in any utility vector in the small upward-pointing triangular. From
Table 3.1, we see that agent 3 prefers strict UTI to ASP. To see this, first recall that
dASP3 = dUTI3 . Then, agent 3 prefers any share of the positive net surplus under strict UTI
on top of his disagreement utility under this principle to any compromise under ASP that
gives him less than his aspiration level.

Table 3.1 also implies that agent i = 1, 2 prefers strict UTI to ATS if his bargaining
weight αi > 0.5547, where the lower bound is equal to the threshold stated in Theorem 3.4.
Then, agent i can compensate the lower disagreement utility dUTIi = 0 (when compared to
the more favorable dATSi = 0.4725) with his share from the larger net surplus w− dUTI3 =
0.858 6 (compared to w −

∑
i=1,2,3 d

ATS
i = 0.0068). Table 1 also shows that agents 1 and

2 prefer negotiations under the ATS principle to compromising under the ASP, which is
due to dASPi = dATSi for i = 1, 2.

3.7 Conclusion

In this chapter, we investigate unanimity bargaining among multiple agents for sharing
a river and how several principles from International Water Law affect the bargaining
outcome. We allow for a general river geography and general cost functions that depend
upon river inflow and own extraction. To capture the bargaining, we apply asymmetric
versions of the Nash bargaining and Nash rationing solution, which each yields an effi-
cient agreement. One key finding is that the efficient water allocations are completely
determined by the water resources, the river geography and the maximal utilitarian wel-
fare. Under ATS and strict UTI, the disagreement outcome is feasible and inefficient.
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Given the efficiency sets the unique water allocation, the remaining issue boils down to
the monetary transfer. The negotiated joint management and financial compensations
form a win-win outcome when compared to disagreement. Also, we derive conditions
under which the common intuition reverses that all upstream and midstream countries
always prefer the ATS principle to the strict UTI principle. This can only occur when
some of these countries have sufficient bargaining power. Under the individual aspiration
or utopia levels, these levels are no longer feasible and all agents have to compromise on
their utopia levels in order to reach agreement. In this situation, the weights fail an inter-
pretation as bargaining weights and should be interpreted as weights of responsibility in
compromising. Higher responsibility weights require larger sacrifices. In terms of utopia
levels, agreements imply incurring losses and the win-win feature is lost.

The analysis in this chapter can be generalized in several directions. Firstly, the ANBS
framework is rich enough for further investigation of other principles from International
Water Law to investigate how these affect the river sharing problem. For instance, another
important principle is the one of fair and equitable optimal water use, as analyzed in Am-
bec and Ehlers (2008). In this reference, it is shown how water can be allocated equitable
as assigned property rights before the agents trade water against money in a Walrasian
competitive market. Then, voluntary trade moves the equitable water allocation towards
the efficient water allocation. Secondly, alternative bargaining solutions from the liter-
ature may be considered. For example, the Kalai-Smorodinsky solution under ATS or
strict UTI is already implicitly analyzed in our analysis, because for transferable utility
this solution coincides with the symmetric Nash bargaining solution. Thirdly, given that
every agent may invoke the legal principle that serves him best, an international politi-
cal process to arrive at a compromise solution over different legal principles in order to
establish legal principles may be needed first before to reach agreement on water and
financial compensations. Fourthly, the implementation of the efficient water allocation
needs further elaboration and we already discussed some rather strong institutional con-
ditions under which it can be implemented. An alternative route for implementation of
an equitable (final) allocation through mechanism design in a common pool is suggested
in Ambec and Ehlers (2008) and we leave extension of this procedure to river sharing
problems for future research. Finally, given empirical data, a more ambitious goal is to
statistically estimate the bargaining (responsibility) weight in the ANBS (ANRS) from
international river treaties, or at the national level, water allocation between provinces.
Although river data is often difficult to get, some countries do publish suitable data. We
discussed how our results may enhance econometric estimation in river sharing problems.
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3.8. Appendix with proofs of Chapter 3

3.8 Appendix with proofs of Chapter 3

Proof of Proposition 3.1

The recursive ATS solution (xATSi , fATSi ) satisfies all water resource constraints xATS ≤
fATS and fATS = e+ (R− I)

(
e− xATS

)
. Therefore, it is a feasible solution of

max
x,f≥0

n∑
i=1

(bi(xi)− ci(fi, xi)) s.t. Rx ≤ Re, f = e+ (R− I) (e− x) .

Hence,
∑n

i=1 d
ATS
i ≤ w. By Assumption 3.2, the recursively derived local optima (xATSi , fATSi )

fail to be the maximizer of (3.2), because these do not internalize the externalities on the

costs of extraction, i.e., ∂ci(fi,xi)
∂fi

< 0. Hence,
∑n

i=1 d
ATS
i < w. QED.

Proof of Proposition 3.3

By definition of (3.2), we have

w =
n∑
i=1

(bi(x
UW
i )− ci(fUWi , xUWi )) <

n∑
i=1

(bi(x
UW
i )− ci(fASPi , xUWi ))

≤
n∑
i=1

(bi(x
ASP
i )− ci(fASPi , xASPi )) =

n∑
i=1

dASPi .

The strict inequality comes from the fact that ci (fi, xi) is decreasing in fi and fUWi <
fASPi . QED.

Proof of Proposition 3.4

Without loss of generality, renumber the agents such that agent i + 1 is agent i’s down-
stream neighbor. By the tree structure of the river, i + 1 ∈ Si = {i+ 1} ∪ Si+1 and
combined with (3.8) we obtain

b′i −
∂ci
∂xi

=
∑

j∈Si∪{i}

pj
λ
−
∑
j∈Si

∂cj
∂fj

=
pi
λ
− ∂ci+1

∂fi+1︸ ︷︷ ︸
>0

+
∑

j∈Si+1∪{i+1}

pj
λ
−
∑
j∈Si+1

∂cj
∂fj

>
∑

j∈Si+1∪{i+1}

pj
λ
−
∑
j∈Si+1

∂cj
∂fj

(3.8)
= b′i+1 −

∂ci+1

∂xi+1

.

Recursive repetition of these arguments implies the stated result. QED.

Proof of Theorem 3.1

After substitution of f , we define M = Πn
i=1(bi(xi)−ci(ei+

∑
j∈P i(ej−xj), xi)+ti−di)αi for

notational convenience. Because the asymmetric Nash product is equivalent to a Cobb-
Douglas utility function, all individual rationality constraints bi(xi) − ci(fi, xi) + ti ≥ di
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will hold with a >-sign in the maximum. Without loss of generality, let L (x, t, p, λ)
denote the Lagrangian with shadow prices p and λ as defined (3.6). Then, the first-order
conditions for x∗ and t∗ read

∂L

∂xi
: αi

M

bi − ci + ti − di
(b
′

i −
∂ci
∂xi

) +
∑
j∈Si

αj
M

bj − cj + tj − dj
Rji

∂cj
∂fj
−

∑
j∈Si∪{i}

Rjipj = 0,

∂L

∂ti
: αi

M

bi − ci + ti − di
− λ = 0.

Writing the first n equations into matrix form, we obtain

RTP = G+ (RT − I)F,

where P , G and F are stated in Theorem 3.1. With respect to the monetary transfers,
we have

M

bi − ci + ti − di
αi = λ, i = 1, . . . , n.

Dividing the equation for i = 1 by the one for i, we obtain

ti =
αi
α1

(b1 − c1 − d1) +
αi
α1

t1 − (bi − ci − di).

This establishes a relationship between ti and t1 for all i ≥ 2. Substitution of these
expressions in

∑n
i=1 ti = 0 yields,

t1+[
α2

α1

(b1−c1−d1)+
α2

α1

t1−(b2−c2−d2)]+...+[
αn
α1

(b1−c1−d1)+
αn
α1

t1−(bn−cn−dn)] = 0.

From which, t1 can be solved as,

t1 = α1

n∑
j=1

(bj − cj − dj)− (b1 − c1 − d1).

Similarly, we obtain

ti = αi

n∑
j=1

(bj − cj − dj)− (bi − ci − di).

QED.

Proof of Theorem 3.2

It suffices to show that the first-order conditions coincide with those for the ANBS given
in the proof of Theorem 3.1. After substitution of f , we have to solve

max
x

∑
i∈N

(
bi(xi)− ci(ei +

∑
j∈P i

(ej − xj), xi)
)
, s.t. Rx ≤ Re (p̃) .
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where p̃ is the vector of Lagrange multipliers. The Lagrangian is given by

L̃ (x, p̃) =
∑
i∈N

(
bi(xi)− ci(ei +

∑
j∈P i

(ej − xj), xi)
)

+ p̃>(Re−Rx),

Taking first-order conditions, for xi, we have

b
′

i −
∂ci
∂xi

+
n∑

j=1,j 6=i

Rji
∂ci
∂fi
−

n∑
j=1

Rjip̃j = 0.

We compare these with the first-order conditions for the ANBS

∂L

∂xi
: αi

M

bi − ci + ti − di
(b
′

i −
∂ci
∂xi

) +
n∑

j=1,j 6=i

(αj
M

bj − cj + tj − dj
)Rji

∂cj
∂fj
−

n∑
j=1

Rjipj = 0.

Let αi
M

bi−ci+ti−di = λ. Then, a simple normalization of the Lagrange multipliers (
pj
λ

) will
get the stated result. QED.

Proof of Theorem 3.3

The Lagrange function for the maximization problem is6

L =
n∏
i=1

(ui(f
∗
i , x

∗
i , 0) + ti − di)αi − λ

∑
i

ti.

The first-order conditions read

∂L

∂ti
: αi

M

ui(f ∗i , x
∗
i , 0) + ti − di

− λ = 0.

For j 6= 1, we have

tj =
αj
α1

[u1(f
∗
1 , x

∗
1, 0)− d1] +

αj
α1

t1 − [uj(f
∗
i , x

∗
i , 0)− dj] .

This establishes a relationship between tj and t1 for all j ≥ 2. Substitution of these
expression into

∑n
i=1 ti = 0 and solve for t1, we obtain,

t̂1 = α1

n∑
j=1

[
uj(f

∗
j , x

∗
j , 0)− dj

]
− [u1(f

∗
1 , x

∗
1, 0)− d1] .

It remains to check for the individual rationality constraint. Indeed,

u1(f
∗
1 , x

∗
1, 0) + t̂1 = d1 + α1(w −

n∑
j=1

dj) > d1

since w >
∑n

j=1 dj. Similar results follow for t̂j for all j ≥ 2. Hence, t̂ coincides with t∗

stated in Theorem 3.1. QED.

6We omit the individual rationality constraint in the Lagrange function. Later on we will check for
this.
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Proof of Theorem 3.4

For agent n, we have

uUTIn > uATSn ⇐⇒ (1− αn)
(
dUTIn − dATSn

)
> −αn

∑n−1

j=1
dATSj .

The inequality always holds, because the left-hand side is positive and the right-hand side
is at most 0. For agent i, we have

uUTIi > uATSi ⇐⇒ αi

(∑n

j=1
dATSj − dUTIn

)
> dATSi .

There are two cases to consider. First, for
∑n

j=1 d
ATS
j ≤ dUTIn , the left-hand side becomes

non-positive and we obtain dATSi < 0, which violates that dATSi is individual rational with
respect to inaction ui (fi, 0, 0) = 0. Second, for

∑n
j=1 d

ATS
j > dUTIn , we obtain

uUTIi > uATSi ⇐⇒ αi >
dATSi∑n

j=1 d
ATS
j − dUTIn

.

Combining both cases implies that the lower bound on αi and the condition for the second
case are both necessary and sufficient for uUTIi > uATSi . QED.
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